Faculty of Engineering and Technology

Third Semester B.E (Electronics Engg.) /E&T/E&C (C.B.S.) Examination

OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURE

Time : Three Hours] [Maximum Marks : 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Due credit will be given to neatness and adequate dimensions.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- (a) Describe with examples, the uses of enumeration data types.
 - (b) What is reference variable? What is its major use?
 - (c) Why does C++ having type modifiers?

OR

(Contd.)

		* x:	
2.	(a)	Explain the benefits and application of OOP's.	_
			6
÷	(b)	Write short note on dynamic memory allocation ar	nd
	(0)	de-allocation.	7
3.	(a)	What is an operator function? Describe the synta	ax
-,	(-)	of an operator function.	5
	(b)	Why is it necessary to overload an operator?	
	(0)	*	4
		What is conversion function? How is it created	1?
	(c)		4
		Explain its syntax.	
4.	(a)	Explain binary operator overloading with an examp	ie.
		* *	7 •
	(h)-	Define a class string. Use overloaded = = opera	tor
	(0)	to compare two strings.	6
1.		What are different forms of inheritance? Give	an
5.	(a)		8
20.	1.5	example of each.	
	(b)	What is containership? How does it differ from	6
1.7		inheritance?	0
87.5		OR	
			nes
6.	(a)	Class D is derived from Class B. The Class D de	the
	. ^ =	not contain any data members of its own. Does	uic
*** - 5 -		Class D requires constructors? If yes, why?	
	F-61 F		7 ·

(Contd.)

	(b)	When do we make a virtual function "Pure?" What are the implications of making a function a pure virtual function?					
7.	(a)	Explain radix sort with the help of suitable example					
	(b)	7 Write a program to implement linear search technique.					
,		. 6					
	OR						
3.,	(a)	Write a program to implement selection sort technique.					
		7					
	(b)	Explain Quick sort with the help of an example.					
		6					
9.	(a)	Write a program to add and delete a node in singly					
		linked list. 7					
	(b)	Define Queue. Also explain various operations allowed					
		on Queue. 6					
	OR						
0.	(a)	Write a program to implement a stack using list.					
	3 .	9					
	(b)	Write a short note on dynamic memory allocation.					
		4					
1.	(a)	Write a program to implement a simple Binary tree.					

www.solveout.in

(b)	Discuss implementation of binary trees using arr	ay.
	v 1	7
+	OR	
(a)	Explain threaded Binary trees with an example	

(b) Explain Inorder, Preorder and Postorder Traversal of a binary tree.