Faculty of Engineering & Technology First Semester B.E. (CBS) Examination APPLIED MATHEMATICS-I

Paper-I

Time-Three Hours]

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

(1) Solve SIX questions as follows:

Que. No. - 1 OR Que. No. - 2

Que. No. - 3 OR Que. No. - 4

Que. No. - 5 OR Que. No. - 6

Que. No. - 7 OR Que. No. - 8

Que. No. - 9 OR Que. No. - 10

Que. No. - 11 OR Que. No. - 12

- (2) Use of non-programmable calculator is permitted.
- 1. (a) If $y = a \cos (\log x) + b \sin (\log x)$ show that $x^2y_2 + xy_1 + y = 0$ and

$$x^2 y_{n+2} + (2n+1) x y_{n+1} + (n^2+1) y_n = 0.$$
 6

(b) Evaluate:

$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$

$$\lim_{x\to 0} x \tan\left(\frac{\Pi}{2} - x\right)$$

MLV-6440

1

Contd.

(b) Expand
$$3x^3 - 2x^2 + x - 4$$
 in powers of $(x-2)$. 5

(a) If $u = \log [\tan x + \tan y + \tan z]$,

Prove that

$$\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$$

(b) If
$$u = \sin^{-1} \left[\frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}} \right]$$
, then

find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 7$

(c) Given
$$u = \sin^{-1}x + \sin^{-1}y$$
, and $v = x\sqrt{1-y^2} + y\sqrt{1-x^2}$. Are u, v functionally related? If so, find the relation between them. 6

4 (a) If
$$u = \frac{yz}{x}, v = \frac{xz}{y}, w = \frac{xy}{z}$$

Find
$$\frac{\partial(x,y,z)}{\partial(u,v,w)}$$

Contd

MIV GAND

MLV 6440

(b) Expand
$$x^2y + 2y - x^2 - 2$$
 in powers of $(x - 1)$ and $(y + 1)$ by Taylor's theorem.

(c) The temperature T at any point
$$(x, y, z)$$
 in space is $T = 400 \text{ xyz}^2$. Find the highest temperature on the surface $x^2 + y^2 + z^2 = 1$.

(a) Test the following system for consistency and solve

$$x + y + z = 6$$

 $2x + y + 3z = 13$
 $5x + 2y + z = 12$

(b) Find the inverse of the following matrix by partitioning method:

OR R

6. (a) Find the rank of the following matrix:

.

Contd

(b) By adjoint method solve the system of equations :

$$x + y + z = 3$$
$$x + 2y + 3z = 4$$

$$x + 4y + 9z = 6$$

(a) Solve:
$$(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$$
.

(b) Solve
$$\frac{dy}{dx} + xy = x^3y^3$$
.

(c) Solve
$$\frac{dy}{dx} = -\frac{xy^2}{2 + x^2y}$$
.

a) Solve
$$p^3 - 4 \times yp + 8y^2 = 0$$
.

b) Solve:
$$x^2(y - px) = yp^2$$

www.solveout.in

When a resistance R ohms is connected in series and current, amperes of time t is given by with an inductance L henries, an e.m.f. of E volts

$$\angle \frac{di}{dt} + Ri = E$$

If $E = 10 \sin t$ volts and i = 0 when t = 0, find i as a function of L

9. (a) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \sin 2x$$

(b) Solve: $\frac{d^2y}{dx^2} + y = \csc x$ by method of variation of

parameters

M.V 6440

Contd

(c) Solve: $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = x \log x$.

0

10. (a) Solve the simultaneous differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} + 3x - 2y = 1$$

$$\frac{dy}{dt}-2x+3y=e^t.$$

(b) Solve
$$\frac{d^2y}{dx^2} = 3\sqrt{y}$$
, given that

$$y = 1, \frac{dy}{dx} = 2 \text{ when } x = 0.$$

(c) The differential equation of simple pendulum is

 $\frac{d^2x}{dt^2} + w_0^2x = F_0$ sin nt, where W₀ and F₀ are constants. If initially x = 0, $\frac{dx}{dt} = 0$, determine the

11. (a) Find all values of (1+1)213 motion when w * n.

(b) If
$$2 \cos \theta = x + \frac{1}{x}$$
, $2 \cos \phi = y + \frac{1}{y}$

prove that xmy" + 1 = 2cos (m0 + n0).

MIV 6440

12. (a) Use De - Moivre's theorem to solve $x^5 + 1 = 0$.

4

(b) If $\cos (\theta + i\phi) = R (\cos \alpha + i \sin \alpha)$

prove that
$$\phi = \frac{1}{2} \log \left[\frac{\sin (\theta - \alpha)}{\sin (\theta + \alpha)} \right]$$

www.solveout.in

19050