Faculty of Engineering & Technology Fourth Semester B.E. (Computer Technology) (C.B.S.) Examination DATA STRUCTURE AND PROGRAM DESIGN

Paper—II Time—Three Hours] [Maximum Marks—

'Time—Three Hours]			Hours] [Maximum Marks—	80
		INS	TRUCTIONS TO CANDIDATES.	
-	(1)	All	questions carry marks as indicated.	
	(2)	Assı	ume suitable data wherever necessary.	
1.	(a)	Exp	lain different searching techniques for 'n' numb	er
	*	of e	lements with proper example.	8
-concrete ((b)	Wri	te an algorithm for Insertion sort.	5
	,		OR	
2.			te a program to implement Bubble sort.	7
	(b)	Exp	lain following terms with proper example:	
•	•	(i)	Sparse Matrix	
		(ii)	"Big O" Notation.	
		(iii)	Recursion.	6
3.	(a)	Exp	lain the following concept related to stack:	
- 10 3	,	(i)	Applications of stack	
		(ii)	Operations of stack.	6
			,	

MIS—767 1 Contd.

(b)	Write an algorithm for transforming infix expression	1					
	into postfix form using stack.						
	OR						
(a)	· 1						
(-)	queue using linked list,	1					
(b)	Write in brief about :); 					
(0)	(i) Circular Queue						
_	(ii) Dqueue.						
(a)	Explain various types of linked list with proper	•					
	representation and example. 5						
(b)	Write a function to:						
	(i) Insert a node at specific position in singly linked	l					
	list						
	(ii) To search an element from a singly linked list.						
	8						
· ·	OR						
(a)	Write a short note on Dynamic Memory Allocation.	,					
	5						
(b)	Write a function to:						
	(i) Insert a node at end in doubly linked list						
* 1 p	(ii) Delete a node from a specific position from	_					
	doubly linked list. 8						

5.

6.

MIS-767

Contd.

7.	Def	ine the following terms and also give examples of each	ı:
	(i)	Tree	
	(ii)	Binary Tree	
	(iii)	Binary Search Tree	
A- ",	(iv)	Strictly Binary Tree	2 × p
	(v)	Full Binary Tree	
	(vi)	Complete Binary Tree	
	(vii)	AVL Tree.	4
		ork	
8.	(a)	Draw a expression tree for the following expression	1:
		(i) $(A + B) * C + D/(B + A* C) + D$	
	, , , Y	(ii) $(A/B) * C + D * E - A * C$.	8
	(b)	Write a non-recursive procedure for in-order travers	al
		of a binary tree.	6
9.	(a)	Explain any one Minimum Cost Spanning Tre	ee
•		algorithm with suitable example.	6
• .	(b)	Define the following terms:	
		(i) BFS	
		(ii) DFS.	8
	Á	OR Wash	×
10.	For	a graph shown obtain:	
	(a)	In degree and out degree of each vertex.	
	(b)	Its Adjancency Matrix	
MIS-	–767	3 Con	td
		Con	

- (c) Its Adjacency list
- (d) Its strongly connected component.

13

- 11. Write short notes on the following:
 - (a) Storage Structure on tapes and disks
 - (b) Indexed Sequential file
 - (c) Direct Access file
 - (d) External Sorting method.

13

OR

- 12. (a) Discuss fundamental file organization tech. Discuss their merits and demerits.
 - (b) Write in detail about Hashing Techniques.

www.solveout.in

MIS-767

4

1050