B.E. Third Semester (Computer Science & Engineering (New)) (C.B.S.) Digital Circuits & Fundamentals of Microprocessor

P. Pages : 2 Time : Three Hours		2 ee Hours	* 0 2 7 6 *	NKT/KS/17/7239 Max. Marks : 80	
	Notes	3: 1. 2. 3. 4. 5. 6. 7. 8. 9.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Assume suitable data whenever necessary. Illustrate your answers whenever necessary with the help of nea	t sketches.	
1.	a)	Convert i) (13 ii) (11 iii) (10 iv) (13	the following. $2)_{0} \rightarrow ()_{H} \rightarrow ()_{B}$ $0110.11)_{B} \rightarrow ()_{D}$ $10110)_{G} \rightarrow ()_{B}$ $2.67)_{H} \rightarrow ()_{D}$	8	
	b)	Explain	and prove De-Morgan's Theorem.	6	
			OR		
2.	a)	Minimiz f(ABCI	the using k-map and implement using logic gates. $DE = \Sigma m(0, 2, 6, 7, 9, 13, 25, 26, 27, 29, 31) + d(1, 3, 4, 30)$	6	
	b)	Express f(a,b,c)	the following function in standard POS form. ab+bc+ac	4	
	c)	Express f(A,B,	the following function in standard SOP form : $C,D) = (\overline{A} + BC)(B + \overline{C}D)$	4	
3.	a)	Design 4	bit binary to Gray code converter using logic gates.	8	
	b)	Draw &	Explain full adder using two half adders and one OR gate.	5	
			OR		
4.	a)	Design t	he 2 bit priority encoder and implement it.	7	
	b)	Impleme f(a,b,c,	ent the following function using 4 : 1 MUX. d) = $\Sigma m(0, 1, 2, 4, 6, 9, 12, 14)$	6	

www.solveout.in

NKT/KS/17/7239

P.T.O

5.	a)	Draw and explain the D flip-flop using NAND Gates.	5	
	b)	What do you mean by sequential circuit? Explain with suitable example.	4	
	c)	Explain Preset and Clear terminal of flip-flop.	4	
		OR		
6.	a)	Explain the working of JK flip-flop. What is race around condition and explain how it is eliminated.	9	
	b)	Explain level triggered and edge triggered signal in flip flop.		
7.	a)	Draw the logic diagram of 4 bit serial IN serial OUT shift register and explain its operation.		
	b)	Design Mod - 5 synchronous counter using J-K flip-flop.	7	
		OR		
8.	a)	Convert the following.i) SR to T flip-flopii) JK to SR flip-flop.	8	
	b)	Design 3 bit Ripple Up-Down counter using T flip-flop.	6	
9.	a)	Draw and explain the architecture of $\mu p 8085$.	8	
	b)	Differentiate between PAL and PLA.	5	
		OR		
10.	a)	Explain all addressing modes of µp8085.	7	
	b)	Write a short note on :	6	
		i) Stack Memory		
		ii) ROM		
11.	a)	Draw and explain Memory Read Machine cycle in detail.	9	
	b)	Explain EI and DI instruction of µp8085.	4	
		OR		
12.	a)	Write a program to shift 10 bytes of data from memory location 8000 H to 9000 H.	5	
	b)	Explain Hardware Interrupt structure of µp8085.	8	

NKT/KS/17/7239

www.solveout.in