B.E. First Semester All Branches (C.B.S.) / B.E. First Semester (Fire Engineering) Engineering Physics

P. Pages : 2 Time : Two Hours			* 0 2 3 1 * Max. Marks :	
	Notes List c	s: 1. 2. 3. 4. 5. 6. 7. of consta	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Assume suitable data whenever necessary. Use of non programmable calculator is permitted.	
		1. 2. 3. 4. 5. 6.	Planck's constant ' h'= 6.63×10^{-34} JS Velocity of light 'C' = 3×10^8 m/s Charge on electron 'e' = 1.602×10^{-19} C Mass of electron 'm'= 9.11×10^{-31} kg Avogadro's constant 'N _A ' = 6.023×10^{26} $\frac{\text{atoms}}{\text{kmole}}$ Boltzman's constant 'K'= 1.380×10^{-23} JK ⁻¹	
1.	a)	What is	Compton effect? Why classical theory failed to explain it?	2+2
	b)		of high atomic no. scatterer element intensity of unmodified wavelength is higher at of modified wavelength. Explain.	3
	c)	scatteri	of initial wavelength 0.5×10^{-10} m undergo Compton Scattering. Find the ng angle at which wavelength of scattered X-rays will be greater than that of t wavelength by one percent?	3
			OR	
2.	a)		de-Broglie hypothesis? Obtain an expression for wavelength associated with an accelerated through a potential difference of 'V' volts.	4
	b)	Show h matter	ow the Bohr's quantization condition of angular momentum follows the concept of waves.	3
	c)		te de-Broglie wavelength of the orbital electron of Hydrogen atom. (Given that of electron is 13.6 eV)	3
3.	a)		an expression for wave function of an electron confined to move in an infinite al well of width 'L'.	5
	b)	What is	a wave packet?	2

www.solveout.in

NKT/KS/17/7197

P.T.O

	c)	Find the lowest energy of an electron in one dimensional potential well of width 2 $\stackrel{\rm o}{\rm A}$. Express the result in electron volts.	3
4.	a)	Discuss a thought experiment of electron diffraction to arrive at Heisenberg uncertainty principle with suitable diagram.	4
	b)	Define phase velocity and group velocity.	2
	c)	Calculate uncertainty in location of an electron and a ball of mass 1 kg if their velocities are 10^5 m / s and 10 m/s respectively.	4
5. a) Derive expression for atomic radius and atomic packing fraction (A.P.F.) for BCC and FCC structures and show that percentage void space is more in BCC compared to FCC structure.			6
	b)	Molybdenum has BCC structure. Its density is 10.2×10^3 kg / m ³ and its atomic wt. is 95.94. Determine radius of Molybdenum atom.	4
6.	a)	What are Miller Indices? Draw the crystal planes in simple cubic structure having Miller Indices (i) (102) and (ii) (0 10).	3
	b)	State and derive Bragg's Law of X-ray diffraction.	4
	c)	The d_{110} interplaner spacing in a BCC metal vanadium is 2.15 Å. Find its lattice constant (a).	3
7.	a)	Explain classification of solids on the basis of energy band diagrams.	3
	b)	 Draw energy band diagrams for the following : i) PN Junction in Reverse Bias ii) NPN Transistor (unbiased) 	2+2
	c)	Find V_0 across a silicon junction at room temperature, if p-region has 10^{21} acceptor	3
		atoms / m^3 and N-region has 10^{22} atoms / m^3 .	
8.	a)	What is Hall effect? Obtain an expression for Hall voltage if p-type semiconductor material is used.	2+3
	b)	What is meant by depletion region?	2
	c)	Determine the probability of an electron thermally excited into the conduction band in Germanium at 27°C, if the energy gap is 0.72 eV.	3

NKT/KS/17/7197

www.solveout.in