7. a) If
$$u = y^3 - 3x^2y$$
, show that u is harmonic find v and the corresponding analytic function $f(z) = u + iv$.
b) Evaluate $\int_{C} \frac{z+4}{z^2+z+5} dz$ where C is a circle $|z+1|=1$.
c) Expand $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = 2$. Also find the region of convergence.
6
8. a) If $u + v = e^x [\cos y + \sin y]$ find analytic function $f(z) = u + iv$.
b) Using Contour integration evaluate $\int_{0}^{2\pi} \frac{1}{1-2a \sin 0+a^2} d\theta$, $0 < a < 1$
c) By using Cauchy Residue Theorem evaluate $\int_{C} \frac{\sin^6 z}{(z-\frac{\pi}{6})^3} dz$ where C is a circle $|z|=1$.
9. a) Solve : $xq = yp + xe^{(x^2+y^2)}$ where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$
b) Solve : $[D^3 - 3DD^2 - 2D^3]z = \cos(x+2y) - e^x (3+2x)$ where $D = \frac{\partial}{\partial x}$, $D' = \frac{\partial}{\partial y}$
10. a) Solve the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$ given that $u = 0$, $\frac{\partial u}{\partial x} = 1 + e^{-3y}$ when $x = 0$ using method of separation of variables.
b) Solve y using Laplace transform.
 $\frac{\partial}{\partial t} + x \frac{\partial}{\partial x} = x - x > 0 \cdot t > 0$. U(x, 0) = 0 and U(0, t) = 0
11. a) Investigate the linear dependence of vectors $x_1 = (2 - 1, 3, 2), x_2 = (1, 3, 4, 2), x_3 = (3, -5, 2, 2)$ and if possible find the relation between them.
b) Find the Modal Matrix for the matrix $A = \begin{bmatrix} 2 & 2 & -3 \\ 2 & 1 & -6 \\ 1 & -2 & 0 \end{bmatrix}$.
(a) Using Cayley Hamilton's Theorem find A^8 if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.
(b) Solve $\frac{d^2 x}{dt^2} + 4x = 0$ given $x(0) = 1, x'(0) = 0$ by matrix method.
(c) Reduce the quadratic form $6x^2 + 3y^2 + 3x^2 - 4xy + 4xx - 2yz$ to the canonical form by an orthogonal transformation.
usureseen