B.E. Third Semester (Information Technology) (C.B.S.)

Digital Electronic & Fundamentals of Microprocessor

P. Pages: 2 Time: Three Hours

NKT/KS/17/7245

Max. Marks: 80

110tes. 1. Thi questions carry marks as maleated	Notes:	1.	All questions carry	marks	as indicated
--	--------	----	---------------------	-------	--------------

- 2. Solve Question 1 OR Questions No. 2.
- Solve Question 3 OR Questions No. 4. 3.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- Solve Question 9 OR Questions No. 10. 6.
- Solve Question 11 OR Questions No. 12. 7.
- 8. Assume suitable data whenever necessary.
- 9. Illustrate your answers whenever necessary with the help of neat sketches.

What is Gate. Explain the basic gates with its truth table. b)

7

OR

5

- Convert the following. b)
 - $(1E)_{H} \rightarrow (q)_{2} \rightarrow ()_{0}$ i)
 - $(101100110.11)_2 \rightarrow ()_d$ ii)
 - $(38.13)_{10} \rightarrow ()_{BCD}$ iii)
 - $(1001101)_{G} \rightarrow ()_{2}$ iv)

- Express the following function in standard SOP form. 3.
 - $f(ABCD) = (\overline{A} + BC)(B + \overline{CD})$ i)
 - $f(PQRS)(P)(QRS + \overline{PQ})(RS + \overline{PQ})$ ii)

8

- Simplify the given function using k-map and Implement using logic gates. b) $f(ABCD) = \Sigma m(0,1,4,5,6,8,9,12) + d(13,14)$

ii) $f(ABCD) = \Sigma m(3,4,6) + d(1,2,5)$

OR

Design a k-map for the function and express function in standard SOP form a)

$$f = AB + AC + C + AD + ABC + ABC$$

- Simplify using k-map and Implement using logic gates. b)
 - $f(ABCDE) = \pi M(0, 2, 5, 7, 8, 10, 16, 21, 23, 24) + d(27, 29, 31)$

i)

1/	b)	Implement the following function using 4 : 1 multiplexer. $f(A, B, C) = \Sigma m(0, 2, 3, 5)$.	6
J)		OR	
6.	a)	Design 1:32 demultiplexer using 1:8 demux.	6
	b)	Design how a full adder is implement from two half adders and one OR gate. Draw the logic circuit and give its truth table.	7
7.	a)	Convert the following Flip-Flop: i) S-R to J-K Flip-flop. ii) J-K flip flop to D flip-flop.	8
	b)	Draw and explain the 4-bit Ripple counter with waveforms. OR	6
8.	a)		7
	b)	Design lock free counter to count in the following sequence.	7
		$2 \rightarrow 7 \rightarrow 1$	
		$ \uparrow \qquad \qquad \downarrow \\ 6 \leftarrow 4 \leftarrow 5 $	
9.	a)	Draw and explain the architecture of $\mu p8085$.	8
	b)		5
	1	i) Readyii) Hold	1
		iii) Trap	4
	(U)	iv) Reset	<
		v) SID OR	
10.	a)		6
	b)	Give the format of flag Register in µp8085. Explain each flag. Also discuss the application of Auxiliary carry flag.	7
11.	a)	Explain hardware interrupt structure of µp 8085 in detail.	8
	b)	Write a program to exchange the blocks of 10 bytes which are present in memory from location 1000 H and 2000 H respectively.	5
		OR	
12.	a)	Draw the timing diagram for the instruction 'LXI H, 1100H;'	8
)<	b)	Explain RIM and SIM instruction of $\mu p 8085$.	5
