B.E. Eighth Semester (Electrical Engineering (Electronics & Power) / Power Engineering) (C.B.S.)

Switchgear & Protection

P. Pages: 3

Time: Three Hours

* 0 5 2 6 *

NKT/KS/17/7579/7640

Max. Marks: 80

6

7

6

7

6

7

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.
- 1. a) Why back-up protection is necessary? Compare back-up protection & primary protection from operation & setting point of view.
 - b) Explain desirable qualities of relay.

OR

- 2. a) Why should protective zones overlap around a circuit breaker? Show with required circuit diagram.
 - b) Explain types of faults, causes of faults, consequences of faults and removal of faults.
- 3. a) Explain the construction & principle of non-directional over-current relay.
 - b) Consider a system:

Given : I_F = 200 A ; CT Ratio = 200/1 for each relay ; R_B = 100% setting & R_A = 125% Time discrimination = 0.5 sec between relays. Determine the time of operation of the two relays & TSM of relay 'A'. Assuming relay R_B has TSM = 0.2.

At TSM = 1, O.T. at various PSM are

PSM	2	4	5	8	10	20
O.T. (sec.)	10	5	4	3.2	2.8	2.4

OR

Design the time current grading scheme for the following system: 200/5 CT Ratio: 200/5 4000A $I_E: 5000 A$ At TSM = 1, the Time/Current characteristic of the relay is as given below: **PSM** 10 15 20 O.T. (sec.) 10 3.9 2.2 2.1 6 b) Show the protection scheme of parallel feeders by using overcurrent relays. 5 Explain how you provide directional feature to a) Impedance & Reactance relay In what way is distance protection superior to over-current for the protection of high b) 3 voltage transmission lines? Explain the carrier current protection based on phase comparison. 7 c) OR Draw & explain the circuit connection of three reactance units used at a particular location 7 6. a) for 3-zones of distance protection. Draw impedance, reactance & Mho relay characteristic to protect 100% length of line b) having impedance of $(2.5 + j6) \Omega/ph$. A fault may occur at any length of the line with arc resistance of 2Ω . Determine the % of line, which can be protected by each type of the relays. 7. An 11 kV, 100 MVA generator is provided with differential scheme of protection. The 7 a) percentage of winding to be protected against phase to ground fault is 85%. The relay is set to operate when there is 20% out of balance current. Determine the value of the resistance to be placed in neutral to ground connection. With neat diagram discuss the differential scheme for bus zone protection. b) 6 OR 8. Explain various types of faults in induction motor & their remedies in short. 6 a) A three phase 60/11 kV star-delta connected transformer is provided by Merz-price b) protection scheme. The CT is on LT side have a ratio of 420/5 Amps. Show that the CTs on HT side will have a ratio of $77:5/\sqrt{3}$. Draw a circuit diagram.

Compare Electromagnetic & static relays.

16	b)	Explain duality between the comparator.	7			
9),		OR OR	7			
10.	Write a short notes on the following with block diagram:					
		a) Static over current relay.	6			
		b) Integrating type phase comparator.	7			
11.	a)	Explain the theories related to current zero interruption method.	6			
	b)	In a 220 kV system, the reactances & capacitance upto the location of circuit breaker is 8 ohms & 0.025 micro F. respectively. A resistance of 600 ohms is connected across the contacts of the C.B. Determine the following:	8			
0		i) Natural frequency of oscillation.ii) Damped frequency of oscillation				
)())	 iii) Critical value of resistance which will give no transient oscillation & iv) The value of resistance which will give damped frequency of oscillation, one fourth of the natural frequency of oscillation. 				
		OR				
12.	a)	Write a short notes on : SF ₆ circuit breaker with circuit, its operation & applications.	8			
	b)	In a system of 132 kV, the line to ground capacitance is 0.01 micro F & the inductance is 5 henries. Determine the voltage appearing across the pole of CB, if a magnetizing current	6			

~~~~~~~~

of 5 amps (instantaneous value) is interrupted. Also determine the value of resistance to

be used across the contacts to eliminate the restricking voltage.

