Computer Applications in Power System

P. Pages: 3

NKT/KS/17/7580
Time : Three Hours

Max. Marks : 80

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Assume suitable data whenever necessary.
7. Use of non programmable calculator is permitted.

1. a) To prove $Y_{B U S}=A^{T}$.[Y].A by singular transformation.
b) For fig. 1 b shown, determine matrices $A, \hat{B}, \hat{C} \& K$. Select node 1 as reference and elements $2 \& 5$ as links prove A. $\mathrm{K}^{\mathrm{T}}=\mathrm{B}$ for given network.

Fig. 1 b

OR

2. For the system shown in fig. 2. Obtain $Y_{\text {BUS }}$ \& $Y_{\text {Loop }}$ by singular transformation. Also obtain Y_{Br} from $\mathrm{Y}_{\mathrm{Bus}}$. Positive sequence reactance of different elements are shown in fig. 2 in brackets.

Fig. 2
3. a) The power system represented by single line diagram is shown below obtain.
i) $Y_{\text {Bus }}$ by direct inspection
ii) $Y_{\text {Bus }}$ by algorithm

Fig. 3(a)
Positive sequence reactances of the elements are given in table.

Element No.	1	2	3	4	5	6
Reactance	0.4	0.3	0.3	0.4	0.5	0.2

b) Derive the equations for the addition of branch to partial network.

OR

4. a) Form Bus impedance matrix using algorithm or the power system shown in fig. 4 a. Select Bus 1 as Ref.

Reactance of the elements are shown in table.

Element No.	1	2	3	4	5
Reactance	0.13	0.1	0.12	0.15	0.14

b) Modify $\mathrm{Z}_{\text {Bus }}$ if the element connected between Bus $2 \&$ Bus 3 is removed. (Refer Fig. 4 a)
c) Modify $\mathrm{Z}_{\text {Bus }}$ if the impedance of the element connected between Bus $2 \&$ Bus 3 is required reduce to 50% of the original value. (Refer Fig. 4 a).
5. a) How three phase network component is represented in impedance and admittance form? Write down performance equation in both forms.
b) Show that the impedance matrix for three phase balanced rotating element can be diagonalised using transformation matrix ' T_{S} '.

OR

6. For the power system shown in fig. 6. If $L-G$ fault takes place at Bus. 3 . Determine :
a) Total fault current
b) Bus voltages during fault

Assume prefault bus voltages of 1 pu.

sequence reactance data is given below :
$\mathrm{G}_{1} \& \mathrm{G}_{2}: \mathrm{X}_{0}=0.08 ; \mathrm{X}_{1}=\mathrm{X}_{2}=0.2 ; \mathrm{X}_{\mathrm{g}}=0.03$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}: \mathrm{X}_{0}=\mathrm{X}_{1}=\mathrm{X}_{2}=0.1 ; \mathrm{X}_{\mathrm{g}}=0.03$
Line : $X_{0}=0.7 \& X_{1}=X_{2}=0.4$
7. a) Give significance of load flow studies. Give classification of buses for load flow studies.
b) Draw the flow chart of Gauss - Seidal iterative method without P - V Bus.
c) Compare G. S method \& Newton Raphson method for load flow solution.

OR

8. 50 Hz synchronous machine is transferring power to infinite bus over a transmission network. The transfer reactances in pu between machine and infinite bus are
Prefault : 0.65
During fault : 4.0
Post Fault : 2.0
Prefault power transfer is 1.0 pu
Voltage of infinite bus is 1.0 pu
Voltage behind transient reactance is 1.5 pu
Inertia Constant $\mathrm{H}=3.5 \mathrm{pu}$
Determine variation of rotor angle and velocity versus t using modified Eulers method.
Take time step of 0.05 sec
Fault is cleared at 0.1 sec . Carry out calculations upto 3 iterations.
