P. Pages: 3

Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Use of non programmable calculator is permitted.
1.

Sketch the function

$$
f(x)=\left[\begin{array}{ll}
\pi+x, & -\pi<x \leq 0 \\
\pi-x, & 0 \leq x<\pi
\end{array}\right.
$$

and find fourier series for $\mathrm{f}(\mathrm{x})$. Hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+----+\infty=\frac{\pi^{2}}{8}$

OR

2. Obtain half range cosine series for $f(x)=2 x-1,0<x<1$.
3. a) Solve $x q=y p+x e^{\left(x^{2}+y^{2}\right)}$
b) Solve $\left(\mathrm{D}^{2}-3 \mathrm{DD}^{\prime}+2 \mathrm{D}^{\prime 2}\right) \mathrm{Z}=\mathrm{e}^{2 \mathrm{x}+3 \mathrm{y}}+\sin (\mathrm{x}-2 \mathrm{y})$
c) Solve by method of separation of variables the equation $\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=2 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u}$, given that $u(x, 0)=6 \mathrm{e}^{-3 \mathrm{x}}$.

OR

4. a) A stretched string with fixed ends at $x=0, x=\ell$ is initially in a position given by $y(x, o)=a \sin \left(\frac{\pi x}{\ell}\right)$. If it is released from the rest, show that the displacement of any point at a distance x from one end at any time t is given by $\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{a} \sin \left(\frac{\pi \mathrm{x}}{\ell}\right) \cos \left(\frac{\pi \mathrm{x}}{\ell}\right)$
b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
c) Solve $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \cos x$.
5. Prove that the sphere is the solid of revolution which, for given surface area has maximum volume.

OR

6.

Find the extrenals of the functionals $\int_{x_{0}}^{x_{1}}\left[y^{2}-\left(y^{\prime}\right)^{2}-2 y \sin x\right] d x$. $x_{4}=[-6,0,-3,-4]$ are linearly dependent. Find the relation.
b) Find the model matrix of $\mathrm{A}=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
7. a) Show that the vectors $x_{1}=[1,0,2,1], x_{2}=[3,1,2,1], x_{3}=[4,6,2,-4]$,
c) Verify Cayley-Hamilton theorem and express $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ as a linear polynomial of A, if $\mathrm{A}=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.
8. a)

Diagonalise the matrix by orthogonal transformation. $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3\end{array}\right]$
b) Use Sylvester's theorem to verify $\log _{\mathrm{e}} \mathrm{e}^{\mathrm{A}}=\mathrm{A}$ where $\mathrm{A}=\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]$.
c) Solve $\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+3 y=0$ given $y(0)=2, y^{\prime}(0)=2$ by matrix method.
9. a) Use Regula-false method to find the root of the equation $\tan x+\tanh x=1$ correct to third decimal place.
b) Solve by Gauss - Seidel method

$$
\begin{aligned}
& 2 x+10 y+z=13 \\
& 2 x+2 y+10 z=14 \\
& 10 x+y+z=12
\end{aligned}
$$

c) Solve by using modified Euler's method the equation $\frac{d y}{d x}=\log (x+y)$, given $y(0)=2$ for $\mathrm{x}=0.2$ take $\mathrm{h}=0.1$.

OR

10. a) Find by Newton-Raphson method the root of the equation $\sin x-\frac{x+1}{x-1}=0$ near to $x=-0.4$.
b) Solve by Runge-Kutta fourth order method $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$, find $y(0 \cdot 2)$ by taking $\mathrm{h}=0.2$.
c) Solve the system of equations by Crout's method
$5 x+2 y+z=12$
$x+4 y+2 z=15$
$x+2 y+5 z=20$
11. Solve by simplex method the L.P.P.

Minimize: $\mathrm{z}=3 \mathrm{x}_{1}-7 \mathrm{x}_{2}+5 \mathrm{x}_{3}$
Subject to: $5 \mathrm{x}_{1}-\mathrm{x}_{2}+4 \mathrm{x}_{3} \leq 15$

$$
\begin{aligned}
& -3 x_{1}+4 x_{2} \leq 8 \\
& 4 x_{1}+3 x_{2}-8 x_{3} \leq 31
\end{aligned}
$$

basic nutrients A, B, C. Daily requirements are 15 units of A, 20 units of B, 30 units of C. One gram of product P has 2 units of $A, 1$ unit of B and 1 unit of C. One gram of product Q has 1 unit of $A, 1$ unit of $B \& 3$ units of C. The cost of P is Rs $12 /$ gram and cost of Q is Rs. 18/gram. Formulate the L. P. P. to minimize the cost.
b) Solve the L. P. P. by graphical method.

Maximize: $\mathrm{z}=6 \mathrm{x}_{1}+4 \mathrm{x}_{2}$
Subject to: $2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 30$

$$
\begin{gathered}
3 x_{1}+x_{2} \leq 24 \\
x_{1}+x_{2} \geq 3 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

