B.E. (Mechanical Engineering) Semester Seventh (C.B.S.)

Computer Aided Design

Time: Three Hours Max. Marks: 80

	Note	s: 1.	All questions carry marks as indicated.	
		2.	Solve Question 1 OR Questions No. 2.	
		3.	Solve Question 3 OR Questions No. 4.	
		4.	Solve Question 5 OR Questions No. 6.	
		5.	Solve Question 7 OR Questions No. 8.	
		6.	Solve Question 9 OR Questions No. 10.	
		7.	Solve Question 11 OR Questions No. 12.	
		8.	Due credit will be given to neatness and adequate dimensions.	
		9.	Assume suitable data wherever necessary.	
0		10.	Illustrate your answers wherever necessary with the help of neat sketches.	
71		11.	Use of non programmable calculator is permitted.	
10	9)	12.	Use of Design databook is permitted.	6
1.	a)	Ехріані	the phases of computer aided design process.	6
	b)	Differen	ntiate between Raster scan and Random scan display systems.	7
			OR	
2.	a)	Explain	in brief how an ellipse can be generated using parametric equation.	6
	b)	Draw th	ne line between end points (10,5) and (15,9) by using Bresenham's line algorithm.	7
3.	a)	What do	o you understand by special transformations? Explain its utility.	5
	b)	rotated	e ABC vertices $A(1,1)$ B $(1,7)$ C(5,4) is scaled by three units in X – direction and by 30° in the anticlockwise direction keeping point $(1,1)$ fixed. Find the rmation matrix and final position of triangle ABC.	9
			OR	
4.	a)	_	gle having vertices (3,2), (3,6) and (8,4) is reflected about the line having equation 4. Find the final position of triangle using 2D transformation.	8
	b)	three pr	of 10 units is having one of its corner at the origin (0,0,0) and three edges along rinciple axes. If the cube is to be rotated about Z-axis by an angle 45° in counter ise direction. Calculate the New position of the cube.	6
5.	a)	-	the concept of following modeling technique in brief. ireframe modeling.	6

- Surface modeling ii)
- Solid modeling.

P. Pages:

State the importance of mating condition in assembly modelling. Enlist various types of mating constraints considered in 2-D and 3-D Assembly modelling.

OR

KNT/KW/16/7474

- **6.** a) Explain the characteristics of B-spline curve.
 - b) Given $P_0(1,1)$, $P_1(2,3)$, $P_2(4,3)$, $P_3(3,1)$ are the vertices of the Bezier polygon. Determine five points on Bezier curve at t = 0, 0.2, 0.4, 0.6, 0.8, 1.
- 7. a) Discuss in detail the various steps involved in FEM.
 - b) Explain in brief the types of element used in FEM.
 - c) Explain the principle of minimum potential energy. 3

OR

- **8.** For axially loaded member shown in Fig. (8) determine
 - i) Nodal displacement
 - ii) Stress in each element
 - iii) Reaction at fixed end.

Take E = 200 GPa $P_1 = 300 \text{ kN}$ $P_2 = 600 \text{ kN}$

Fig. (8)

13

9. Figure (9) shows three bar truss with pin joints. Given E = 200 Gpa, c/s area of each element = 350 mm^2 . Determine (i) Nodal displacement 2) stress in each element 3) Reaction at support.

OR

10.

For triangular plate shown in Fig. (10) determine nodal displacements and element stresses using a one element model

Take E = 70 Gpa, v = 0.25, t = 10 mm. Assume plane stress condition.

11

A shaft is to be used to transmit a torque of 2000 N-m. The required torison stiffness of shaft is 1200 N-m 1degree, while factor of safety based on yield strength in shear is 2. Using maximum shear stress theory design the shaft with the objective of minimizing the weight , out of the following materials.

- 1) SAE 1030
- 2) SAE 4140
- 3) Aluminum 260
- 4) SAE 1010

OR

12.

A simply supported beam having rectangular cross-section and length 950mm is subjected to a load of 8.5 KN acting at the center of the beam.

Design the beam with following specifications;

Factor of safety; N = 1.6 d/b ratio: K = 5

Depth (d) should lie between 15 mm and 150 mm; solve the problem for minimum deflection using following material.

- 1) SAE 3120 (oil quenched)
- 2) SAE 1010
- 3) Aluminum 260

13

13

