KNT/KW/16/7300
Max. Marks : 80

Notes : 1. All questions carry marks as indicated.
2. Solve six questions as follows.
3. Que. No. 1 OR Que. No. 2.
4. Que. No. 3 OR Que. No. 4.
5. Que. No. 5 OR Que. No. 6.
7. Que. No. 7 OR Que. No. 8.
8. Que. No. 9 OR Que. No. 10.
9. Que. No. 11 OR Que. No. 12.
8. Illustrate the answers with necessary figures/drawings wherever necessary.
9. Assume suitable data wherever necessary.

1. a) Consider the following \in-NFA.

	\in	a	b	c
$\rightarrow \mathrm{p}$	ϕ	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	ϕ
${ }^{*} \mathrm{r}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	ϕ	$\{\mathrm{p}\}$

i) Compute the \in-closure of each state.
ii) Give all the strings of length three or less accepted by the automaton.
iii) Convert the automaton to a DFA.
b) Define the following with suitable example:-
i) Language
ii) String
iii) Null string.

OR

2. a) Consider the language L of all strings of a's and b 's that do not end with b and do not contain the substring bb . Find a finite language S so that $\mathrm{L}=\mathrm{S}^{*}$.
b) Compare Moore machine with mealy machine. Construct mealy machine equivalent to the

Moore machine given below.

Present state	Next State		Output
	$\mathrm{b}=0$	$\mathrm{~b}=1$	
r_{0}	r_{3}	r_{1}	0
r_{1}	r_{1}	r_{2}	1
r_{2}	r_{2}	r_{3}	0
r_{3}	r_{3}	r_{0}	0

Table 2.b Moore Machine
3. a) State the pumping Lemma for regular languages. Consider the language, L given below and prove using pumping lemma, L is not a regular language.
$\mathrm{L}=\left\{0^{\mathrm{i}^{2}} \mid \mathrm{i} \geq 1\right\}$.
b) Construct a regular expression corresponding to the state diagram given below:-

OR

4. a) Explain the Chomsky hierarchy of languages. For each also write the appropriate grammar.
b) Write the steps used to convert the Right linear grammar into Left linear grammar.

Convert the following Right linear grammar to left linear grammar :-

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bC} \\
& \mathrm{~B} \rightarrow \mathrm{aD}|\mathrm{bB}| \mathrm{a} \\
& \mathrm{C} \rightarrow \mathrm{bC}|\mathrm{bB}| \mathrm{b} \\
& \mathrm{D} \rightarrow \mathrm{a} \mid \mathrm{aB}
\end{aligned}
$$

5. a) Convert the grammar given below into Greibach Normal form.

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow Y S \mid i \\
& Y \rightarrow S X \mid q
\end{aligned}
$$

b) Show that the grammar given below are ambiguous.
i) $\quad \mathrm{S} \rightarrow \mathrm{a}|\mathrm{abSb}| \mathrm{aAb}$

$$
\mathrm{A} \rightarrow \mathrm{bS} \mid \mathrm{aAAb}
$$

ii) $\mathrm{S} \rightarrow 0 \mathrm{~B} \mid 01$

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{AB} \mid 0 \\
& \mathrm{~B} \rightarrow \mathrm{AB} 1 \mid 1
\end{aligned}
$$

OR

6. a) Construct a PDA for the following languages.
i) $L=\left\{a^{n} b^{n+m} a^{m} \mid n, m \geq 0\right\}$

b) Write the closure properties of context - free languages, if L_{1} and L_{2} are context - free languages.
7. a) Construct a Turing machine that will accept the following language on $\{0,1\}$
b) Design a Turing machine that performs one's complement of the binary number.

OR

8. a) What do you mean by Restricted Turing machine? With the help of neat diagram, write about the working of multistack machines.
b) Construct a context sensitive grammar for the language, M given below :-
$M=\left\{x^{\ell} y^{\ell} z^{\ell} \mid \ell \geq 1\right\}$.
9. a) What is the difference between recursive languages and recursive enumerable languages?

And, show that the recursive and recursive enumerable languages closed under property of union.
b) Prove that post correspondence problem with two lists

$$
\begin{aligned}
& \ell=(a b, b, b) \\
& m=\left(a b^{3}, b a, b^{2}\right)
\end{aligned}
$$

has no solution.

OR

10. a) Given an arbitrary Turing machine M over alphabet $\Sigma=\{a, b\}$, and an arbitrary string ω over Σ, does M halt when it is given ω as an input?
Show that the halting problem is not decidable.
b) Explain the concept of Church's hypothesis.
11. a) What is primitive recursive function? Find two functions g and h so that the function f defined by $f(x)=x^{2}$ is obtained from g and h by primitive recursion.
b) "If unbounded minimalization applied to a primitive recursive predicate yields a total function, the function is primitive recursive." True or false. Justify your answer.

OR

12. a) Show that the operations multiplication and addition are primitive recursive.
b) Explain with neat sketch unbounded minimalization.
www.solveout.in
