B.E. (Electronics Engineering) Semester Seventh (C.B.S.)

Elective - I : Digital Image Processing Paper – I

P. Pages: 2
Time: Three Hours

b)

KNT/KW/16/7447

Max. Marks: 80

-----\\\\

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Due credit will be given to neatness and adequate dimensions.
 - 9. Assume suitable data whenever necessary.
 - 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 1. a) Explain the fundamental steps in digital image processing with neat block diagram.
- _

b) Write a short note on Image Sampling and Quantization.

7

OF

2. a) What are different distance measures used for image? Compute De, D4 and D8 distance between two pixels p and q in the image shown below:

Define the term 4-, 8- and m- path between two points p and q in an image.

8

- 0 1 1 1 (q) 1 0 0 0
- 1 1 1 1
- (p) 1 1 0 1

Give the example.

6

- **3.** a) Write short note on Histogram equalization.
 - b) The gray level histogram of an image is given below:

7

Gray level	0	1	2	3	4	5	6	7
Frequency of Occurrence	400	700	1350	2500	3000	1500	550	0

Compute the Gray Level Histogram of the output image obtained by enhancing the input by Histogram equalization technique.

OR

- **4.** a) Write a short note on RGB colour model.
 - b) Write and explain the full colour processing.

6

5. a) Obtain the 4 – length DCT for the following discrete sequence.

$$\{1,3,-2,4\}$$

b) For 2×2 transform A and the image U, calculate the transformed image V and the basis images:

$$A = \sqrt[1]{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \quad U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

OR

6.	a)	Generate 4×4 Haar transform matrix. Apply Haar transform to the image snown.	δ						
11.	2	1 2 4 5							
\cup		2 3 6 7							
		3 6 3 2							
		1 4 6 7							
		10							
	b)	Generate 8×8 Hadamard Transform matrix.	5						
7.	a)	Explain the generalized image compression model with neat block diagram.	7						
	b)	Determine which bit, if any is in error in the Hamming encoded messages:							
		1 1 0 0 1 1 1, 1 1 0 0 1 1 0 and 1 1 0 0 0 1 0. What are the decoded values?							
		OR							
8.	a)	Write short notes on lossless predictive coding model.	7						
	b)	The arithmetic decoding procedure is the reverse of the encoding procedure. Decode the	7						
) -		message 0.23355, given the coding model.	•						
		Symbol a e i o u !							
		Probability 0.2 0.3 0.1 0.2 0.1 0.1							
		(0/5)							
9.	a)	Explain Gradient – and Laplacian operators.	7						
	b)	Use a Hough transform to find a straight line. Given data points at (0, 1), (1, 1), (2, 2)	6						
	0)	and $(3,3)$.	Ů						
		OR							
10.	a)	Find the chain codes and shape numbers of the image given in fig. below. Also find the	7						
		order of shape numbers. Assume 4-connectivity.	L						
	(I)		<						
		2(0)							
		1(0)							
	b)	Find out the signature of each of the following:	6						
		i) Circle							
		ii) Squareiii) Equilateral triangle.							
		iii) Equilateral trialigie.							
11.	a)	Write short notes on image degradation model.	6						
	b)	List and explain common PDFs found in image processing applications.	7						
TE	260	OR	1						
12.	a)	Write a short note on Inverse Filtering.	6						
) <	b)	With neat diagram explain the model of restoration process.	7						
	*	******							