B.E. (Computer Engineering) Fifth Semester (C.B.S.) **Theory of Computation**

P. Pages : 4 Time : Three Ho	$\frac{1}{1} \times 0 \times 6 \times 4 \times 1$	TKN/KS/16/7448 Max. Marks : 80
Notes : 1.	All questions carry marks as indicated.	
2.	Solve Question 1 OR Questions No. 2.	
3.	Solve Question 3 OR Questions No. 4.	
4.	Solve Question 5 OR Questions No. 6.	
5.	Solve Question 7 OR Questions No. 8.	
6.	Solve Question 9 OR Questions No. 10.	
7.	Solve Question 11 OR Questions No. 12.	
8.	Due credit will be given to neatness and adequate dimensions.	
9.	Assume suitable data whenever necessary.	
17		4 1 4 1

10. Illustrate your answers whenever necessary with the help of neat sketches.

Convert the following NFA to DFA : 1. a)

- Design a DFA to accept string xvy. over a alphabet $\{x, y\}$. b) 4
- Consider the string sita. Write its prefix, suffix and proper prefix. c)

OR

- Finite state machine is represented by state function (STF) and machine function (MAF), 2. a) 4 explain both with suitable example.
 - Draw the transition graph from the given transition table. Check whether it is DFA or not. 5 b) Justify your answer.

Draw and explain the Moore and Mealy machine. c)

6

3

3. a) Consider the transition system given in below figure. Prove that the string recognized is $(0+0(1+00)^*1)^* 0(1+00)^*0$

b) Find the Regular expression corresponding to the given transition diagram :

4. a) Convert the following right linear grammar into left linear grammar. $S \rightarrow xyx B | yx$ $B \rightarrow yxx B | yx C$

$$C \rightarrow y$$

b) Prove the following :

(Make use of identities for regular expressions) $\in +b^*(abb)^*(b^*(abb)^*)^* = (b+abb)^*$

5. a) Define ambiguous and unambiguous grammar. Check whether the given grammar is ambiguous or not. Justify your answer for the string aaa bb abb.

 $E \rightarrow aEEb / aF / bE / aG / \in$ F \rightarrow E / bG G \rightarrow b

b) For the grammar given below : $P \rightarrow (E)/b$ $E \rightarrow E, P/P$

> generate the string (b, (b,b)) using left sentential and right sentential form.

> > OR

2

7

7

6

8

6. a) Reduce the grammar G given below to CNF.

$$G = \{S \rightarrow aAD | A \rightarrow aX | bAX \\ X \rightarrow d \\ D \rightarrow b\}$$

b) Draw neatly the model of push Down Automata (PDA) and write 7 – tuples used for the design of PDA. And construct the PDA for the language

$$\mathbf{T} = \left\{ \boldsymbol{\omega} \in \mathbf{r}^{m} \mathbf{u}^{m} \mid m \ge 1 \& \mathbf{n}_{r}(\boldsymbol{\omega}) = \mathbf{n}_{u}(\boldsymbol{\omega}) \right\}$$

where $n_r(\omega)$ is the number of r in ω . and $n_u(\omega)$ is the number of u in ω

- 7. a) Explain with neat diagram, the general model of Turing Machine, and use of each 6 component used in it. Also, explain the tuples used in the design of Turing Machine with example.
 - b) Explain the following :
 - i) Working of Linear Bounded Automata.
 - ii) Universal Turing Machine.

- 8. a) Explain the 5 tuples of counter machine and construct a counter machine for the language 5 $M = \left\{ a^{m}y^{m} \text{ where } m >= 1 \right\}.$
 - b) Explain the context sensitive languages. And comment on "If L is a context sensitive 8 language, then L is accepted by a Linear bounded automaton".
- **9.** a) Explain the term "undecidability of problem" in Turing Machine.
 - b) Explain the following related to Turing Machine.
 - i) Halting problem of Turing Machine.
 - ii) Empty tape problem of Turing Machine.

OR

10. a) Calculate the value of A (3, 4) using Ackermann's function.
5
b) What is the used of PCP? Does PCP has solution for the given lists :
i) C = (10, 1110, 11) D = (0, 111, 100)

3

ii) $\{(m^3, nm^2n), (m^3, nm^2n^1)\}$

3+4

5

- 11. a) Explain the following basic and complex primitive recursive functions with example of 8 each:
 - i) Zero function
 - Successor function ii)
 - iii) Projection function
 - iv) Composition
 - Show that the function f is a primitive recursive function. b) $f(x, y) = x^y$

OR

- 12. a) Explain the following with suitable example :
 - i) TURING - COMPUTABLE functions.
 - ii) μ - recursive function
 - Write a short note on (any one) b)
 - i) bounded minimalization and
 - ii) unbounded minimalization.

8