B.E. Fourth Semester (Computer Technology) (C.B.S.)

Theory of Computation

Paper - IV

P. Pages: 3

KNT/KW/16/7291

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - Solve Question 3 OR Questions No. 4. 3.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Ouestion 7 OR Ouestions No. 8.
 - Solve Question 9 OR Questions No. 10. 6.
 - Solve Question 11 OR Questions No. 12. 7.
 - 8. Assume suitable data whenever necessary.
 - 9. Illustrate your answers whenever necessary with the help of neat sketches.
- Define and explain the following terms with suitable examples:

- i) Transitive closure
- ii) Reflexive transitive closure
- iii) **Equivalence Relation**
- Countability and diagonalization iv)
- b) What is formal grammar? Explain different types of formal grammars by giving rules/format of production for each formal grammar.

5

OR

Prove the following by using principle of mathematical inductiona)

i)
$$1^2 + 2^2 + 3^2 - \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

ii)
$$1+2+----n = \frac{n^2+n}{2}$$

- What is string, prifix, suffix, proper prifix & proper suffix with examples. b)

Short Note on Pigeon hole principle. c)

3

Design DFA to check whether ternary number is divisible by three. 3. a)

5

What are the applications of finite Automata explain in detail. b)

Differentiate NFA & DFA c)

5

OR

a) Design DFA which accepts the set of strings that either start with 01 or end with 01 over $\Sigma \{0, 1\}$

- b) Design Moore M/C for a binary I/P sequence such that if it has a substring 101 the M/C output A, if it has a substring 110, the Machine O/P B, Otherwise it O/P C.
- c) Give Analytical Defination of Moore & Melay Machine.

2

6

5. a) Find regular expression for the following transition diagram –

b) Obtain an equivalent left linear grammar for the following right linear grammar –

6

- $S \rightarrow bA$
- $A \rightarrow aA \mid bB \mid b$
- $B \rightarrow bA$

Also Mention the steps

OR

6. a) Find equivalent Greibach normal form representation for the following CFG.

8

- $S \rightarrow AA \mid 0$
- $A \rightarrow SS | 1$
- b) Construct NFA with and without E transition equivalent to the following regular expression –

 $R_1 = 10 + (0 + 11) \ 0*1$

7. a) Construct PDA for the following language

 $L = \{a^{2n} b^n | n > 0\}$

b) Construct PDA equivalent to the following grammar:

7

 $S \rightarrow aAA$

 $A \rightarrow aS \mid bS \mid a$

and show acceptance rejection for the string 'aaabaaaaa'

OR

8. a) Prove that $L = \{a^j b^j C^j \mid j \ge 1\}$ is not a CFL.

8

b) Explain, with suitable example, closure and decision properties of CFL.

6

9. a) Design a T. M. to find 2's complement of a given binary number.

7

1/1	D)	Explain briefly about universal turing machine.	0
N)		OR	
10.	a)	Design T.M. to recognize all palindrome strings over {a, b}	7
	b)	What are different types of Turing machine? Explain each type in brief.	6
11.	a)	Define Ackerman's function? What is the significance of it? Compute $A(1,1)$, $A(2,1)$, $A(1,2)$ and $A(2,2)$.	7
	b)	Explain the properties of recursive enumerable language.	6
		OR	
12.	a)	Show that the function ABS $(x,y) = x-y $ is primitive recursive.	7
)(b)	What is PCP and modified PCP. Give one solution for the PCP for following sequences shown in table –	6
		i A B 1 0 000 2 010001 01	

058 058

01

050

