B.E. Fourth Semester (Electrical Engineering (Electronics & Power)) (C.B.S.)

Elements of Electromagnetics Paper – II

P. Pages: 3

Time: Three Hours

KNT/KW/16/7279

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.

1. a) Given points A (2, 5, -1), B (3, -2, 4) and C (-2, 3, 1) find:

8

- i) $\overline{R_{AB}} \cdot \overline{R_{AC}}$
- ii) Angle between $\overline{R_{AB}}$ and $\overline{R_{AC}}$.
- iii) The length of projection of $\overline{R_{AB}}\,$ on $\,\overline{R_{AC}}\,$
- iv) The vector projection of $\overline{R_{AB}}$ on $\overline{R_{AC}}$.
- b) The vector $\overline{R_{AB}}$ extends from A (1, 2, 3) to B. The length of vector is 10 unit and direction is given by $\hat{a} = 0.6a\hat{x} + 0.64a\hat{y} + 0.48a\hat{z}$. Find the coordinates of point B.

6

OR

2. a) Two vectors are given by

$$\overline{A} = -4 a\hat{x} + 2 a\hat{y} + 3 a\hat{z}$$
 and

$$\overline{B} = 3a\hat{x} + 4a\hat{y} - a\hat{z}$$
 Find:

- i) Vector component of \overline{A} that is parallel to \overline{B} .
- ii) A unit vector perpendicular to the plane in which vectors \overline{A} and \overline{B} lies.
- b) Given the points $P(\rho = 5, \phi = 60^{\circ}, z = 2)$ and $Q(\rho = 2, \phi = 110^{\circ}, z = -1)$ Find:

- i) Distance $|\bar{F}_{PO}|$
- ii) Give the unit vector in Cartesian coordinate at P that is directed towards Q.
- iii) A unit vector in cylindrical coordinates at P that is directed towards Q.
- 3. a) In a free space, point charge $Q_1 = 10 \,\text{nC}$ is located at A (0, -4, 0) and $Q_2 = 20 \,\text{nC}$ is at B (0, 0, 4). Where should a 30nC point charge be located so that \overrightarrow{E} is zero at the origin?

6

b) State and explain Coulomb's Law. Derive an expression for electric field intensity for an infinite length uniform line charge having density $\rho_{\rm L} \, {}^{\rm C}\!\!/_{\!\! m}$.

OR

4. a) Three uniform sheets of charge are located in free space as follows:

6

$$2 \frac{\mu c}{m^2}$$
 at $x = -3$;
 $-5 \frac{\mu c}{m^2}$ at $x = 1$;
 $4 \frac{\mu c}{m^2}$ at $x = 5$;

Find \overrightarrow{E} at the points.

- a) (0, 0, 0)
- b) (2.5, -1.6, 4.7)
- c) (8, -2, 5)
- b) Eight 25nC point charges are located symmetrically on a circle of radius 0.2m centered at origin in Z = 0 plane.
 - at **7**

- i) At what point on Z axis is $\mid E \mid$ maximum?
- ii) What is value of $\left| \overline{E} \right|_{\text{max}}$?
- 5. a) State divergence theorem. Give physical significance of divergence.

4

b) Given $D = \frac{5r^2}{4} a\hat{r} \int_{m^2}^{r} dr$ in spherical coordinates. Evaluate both sides of divergence theorem for the volume of the sphere enclosed by r = 4m.

OR

6. a) If $\overline{E} = \frac{-10}{x^2} a\hat{x} + \frac{10}{x} a\hat{y} + 5a\hat{z}$, $\sqrt[V]{m}$

6

Calculate:

- i) V_{PO} given P (-10, 4, 2) and Q (5, 1, 1)
- ii) V_P if V = 0 at Q.
- b) If $V = 60 \sin \theta$ volts, in free space and point P is located at r = 3, $\theta = 60^{\circ}$, $\phi = 25^{\circ}$, Find:
 - i) V_P

ii) \overline{E}_{P}

iii) $\frac{dV}{dN}$ at P

iv) â_N at P

- v) ρ_V at P
- 7. a) Derive Laplace's equation. Express Laplace's equation for Cartesian, cylindrical and spherical coordinates.

7

16	b)	State and prove Uniqueness theorem.	7
7)		OR	
8.	a)	Derive the boundary conditions for the boundary between two dielectric materials.	7
	b)	Derive the expression for capacitance of a parallel plate capacitor with two dielectric medium.	7
9.	a)	State and explain: i) Biot – Savart's Law ii) Stoke's theorem.	6
6	b)	Find the vector magnetic field intensity in Cartesian coordinate at P (1, -5, 3) due to a current filament of 24A in az direction on the z-axis. extending from :	7
10	9	i) $z = 0$ to $z = 6$ ii) $z = 6$ to $z = 0$	
		OR	
10.	a)	State and explain Ampere – circuital law.	6
	b)	Evaluate both sides of Stoke's theorem for the field $\overline{H} = 6xy a\hat{x} - 3y^2 a\hat{y}$, A_m and the	7
		rectangular path around the region $0.2 \le x \le 0.5$, $-1.5 \le y \le 1$, $z = 0$. Let the positive direction	
		of $d\overline{s}$ be $a\hat{z}$.	
11.	a)	State Maxwell's equation in point form for time varying fields.	6
	- [500	TE
	b)	A 150 MHz uniform plane wave in free space is travelling in the $a\hat{x}$ direction. The electric field intensity has a maximum amplitude of $200a\hat{y} + 400a\hat{z}$ V/m at P (10, 30, -40) at time	7
	(0)	field intensity has a maximum amplitude of $200a\hat{y} + 400a\hat{z}$ V/m at P (10, 30, -40) at time $t = 0$. Find i) ω ii) β) `
		iii) λ iv) $\frac{\mathbf{v}}{\mathbf{E}}$	
		v) $\frac{\eta}{H}(x, y, z, t)$ vi) $\frac{\overline{E}(x, y, z, t)}{E(x, y, z, t)}$	
		OR	
12.	a)	State and derive Poynting vector equations.	7
	b)	Explain the terms :	6
		i) Attenuation Constant.	5)
E	77(ii) Phase Constant.	Ô
)<	9)	iii) Skin depth.	
