## B.E. Sixth Semester (Civil Engineering) (C.B.S.)

## Fluid Mechanics - II

P. Pages: 3

Time: Three Hours



KNT/KW/16/7377

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.
- 1. a) Derive Hagen-Poiseuille equation and write the assumptions made in it.

6

7

b) Calculate the diameter of a parachute to be use for dropping on object weighing 980 N so that the maximum terminal velocity of dropping is 5 m/sec. The drag coefficient for the parachute which may be treated as hemispherical is 1.3. The density of air is 1.22 kg/m<sup>3</sup>.

)R

2. a) Describe in brief various ways in which boundary layer thickness is defined.

6

b) What is mean by Drag Force & Lift force and what are the differents types of Drag?

7

**3.** a) Explain :

6

7

- i) Hydraulically smooth and rough boundaries.
- ii) Total Energy line & Hydraulic Grade line.
- b) Three pipes are connected in parallel between two reservoirs having water level difference of 15m. The details is given below.

| Pipe I   | L = 1.2  km | D = 0.8  m  | F = 0.03 |
|----------|-------------|-------------|----------|
| Pipe II  | L = 1.0  km | D = 0.65  m | F = 0.03 |
| Pipe III | L = 1.5  km | D = 1.0  m  | F = 0.02 |

- a) Determine Discharge through each pipe & Total Discharge.
- b) Also calculate diameter of single pipe required to replace three pipes with Length L = 1.2 km & F = 0.03.

OR

| 4. | 9)     | in-flow at A is 70 m <sup>3</sup> /sec & that at 'c' is 50 m <sup>3</sup> /sec. The outflows at 'B' & D are 40 m <sup>3</sup> /sec & 80 m <sup>3</sup> /sec respectively. The values of K in the Friction loss formula $h_f = K \cdot Q^2$ is given below.                                                        | 5 |
|----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    |        | Pipe: AB BC CD DA BD K: 3 4 2 2 1 Analyze the pipe network using Hardy - Cross method.                                                                                                                                                                                                                            |   |
| 5. | a)     | Define: a) Conveyance of channel. b) Section Factor. c) Alternate Depth.                                                                                                                                                                                                                                          | 6 |
|    | b)     | A Rectangular channel cross section having base width of 2m & depth of Flow 1.5m. Bed slope is 1 in 2000 is to be converted into most economical trapezoidal cross section with side slope 1:1.5, so as to carry same discharge with same bed slope. Determine dimension of trapezoidal section. Take $N=0.016$ . | 7 |
| 6. | a)     | Derive the equation for critical depth for a wide rectangular channel.                                                                                                                                                                                                                                            | 6 |
|    | b)     | A triangular channel with vertex angle of $120^0$ has carry discharge 2 m $^3$ /sec. Determine the critical depth & minimum specific energy.                                                                                                                                                                      | 7 |
| 7. | a)     | Give the classification & characteristics of surface profiles. for steep slope & critical slope.                                                                                                                                                                                                                  | 6 |
|    | b)     | N = 0.024. If the normal depth is 1.55 m, what is the normal discharge? The depth of Flow increases to 4.0 m behind dam in the channel. How for upstream of dam is a depth of 2 m likely to occure.                                                                                                               | 8 |
|    |        | OR                                                                                                                                                                                                                                                                                                                |   |
| 8. | a)     | Define hydraulic Jump. What are the different types of hydraulic Jump based on Froude number? Also write uses of hydraulic jump.                                                                                                                                                                                  | 6 |
|    | b)     | A hydraulic jump is formed in rectangular channel with super critical flow velocity 12 m/sec & ratio of sequent depth is 11.5. Determine.  a) Depth of Jump  b) Initial Froude number.                                                                                                                            | 8 |
|    |        | c) Head loss.                                                                                                                                                                                                                                                                                                     |   |
| TE | 2(9)   | d) Energy loss as % of Initial.                                                                                                                                                                                                                                                                                   |   |
| 9. | a)     | Explain.                                                                                                                                                                                                                                                                                                          | 5 |
|    |        | <ul><li>a) Froude model law.</li><li>b) Reynold's model law.</li></ul>                                                                                                                                                                                                                                            |   |
| k  | KNT/KV | W/16/7377 2                                                                                                                                                                                                                                                                                                       |   |

- b) Explain.
  - a) Distorted model.
  - b) Similitude & types of similarity.

## OR

- **10.** a) A spillway 8m high & 14m long Discharges 90 m<sup>3</sup>/sec. Water under a head of 3.0m. If a 1:20 scale model of thin spillway is constructed. Find the model dimensions, head over the model & the model discharge.
  - b) An orifice meter to carry water is calibrated with air in a geometrically similar model at 1/5 prototype scale. Determine discharge ratio (air to water) so that dynamically similar flow will be obtained. Assume the ratio of kinematic viscosity of air to water as 13.5.
- 11. a) Draw the neat sketch of centrifugal pump & explain the function of each unit.
  - b) A single acting reciprocating pump running at 60 rpm delivers 0.00786 m<sup>3</sup>/sec. of water. The diameter of piston is 200 mm & stroke length 300 mm. Suction & delivery head are 4.0m. & 12.0m respectively. Determine.
    - i) Theoretical discharge.
- ii) Coefficient of discharge.

iii) % slip.

iv) Power required to run pump.

7

7

## OR

- 12. a) Explain differents types of Heads and Efficiency of turbine.
  - b) Under a head of 200m at 500rpm, a turbine develops 550kw of power. Determine its normal speed and output under a head of 120m.

\*\*\*\*\*\*