B.E. Eighth Semester (Civil Engineering) (C.B.S.)

Irrigation Engineering

P. Pages: 3

Time: Three Hours

KNT/KW/16/7529

Max. Marks: 80

Note: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Ouestion 7 OR Ouestions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 11. Use of non programmable calculator is permitted.
- 1. a) Differentiate between : any two.

(

- i) Drip Irrigation and Sprinkler irrigation.
- ii) Storage Irrigation and Flow Irrigation systems.
- iii) Border Irrigation and Furrow Irrigation.
- b) Following table indicates the data of a off-taking canal.

Determine the discharge at the head of this canal by assuming 20% losses as conveyance

losses.

S.N	Crop	Base Period Water requirement		Area Irrigated		
2	(\bigcirc)	(days)	of crop (cm)	(ha)		
(1)	Sugarcane	300	400	1000		
2	Overlap sugarcane in hot weather	100	150	200		
3	Hot weather crop	120	150	300		
4	Kharif crop	120	55	800		
5	Rabi crop	120	70	900		

OR

2. a) Define the following: any four.

i) duty,

ii) delta,

6

iii) capacity factor,

iv) root zone depth,

v) field capacity

- vi) crop ratio.
- b) After how many days will you do irrigation in order to ensure healthy growth of crops, if:
 - i) Field capacity of soil = 30%
 - ii) Permanent wilting percentage = 13%
 - iii) Density of soil = 13KN/m³
 - iv) Effective depth of root zone = 750 mm
 - v) Daily consumptive use of water for the given crop = 12 mm,

For healthy growth moisture content must not fall below 25% of the water holding capacity between the field capacity and the permanent wilting point.

- 3. a) Write Short Notes: any two
 - i) Sedimentation of a reservoir
 - ii) Reservoir storage zones and water levels.
 - iii) Criterion for Selection of site for a reservoir.
 - b) The following table gives the mean monthly runoff of a river.

Month	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar
Runoff Mm ³	3	5	8	13	16	18	12	8	5	2	2.2	2.5

Draw a mass curve and find the capacity of the reservoir for the combined demand for irrigation, power generation reclamation etc. is 5 million cu. m/ min.

OR

- **4.** a) Explain how would you determine the area-elevation and capacity-elevation curves for reservoir and their utility?
 - b) Fix FRL, LSL, HFL and TBL of a reservoir from the following data:
 - i) Effective storage required for crops = 3200 ha-m
 - ii) Reservoir losses = 20% of effective storage.
 - iii) Carry over allowance = 10% of effective storage.
 - iv) Dead storage = 10% of gross storage.
 - v) Flood lift = 3.2 m
 - vi) Free board = 3.0 m

Contour RL (m)	81	84	105	108	111
Storage (Mm ³)	3.62	4.25	44.75	49.26	59.25

- 5. a) Solve any two.
 - i) Explain elementary profile of a Gravity dam.
 - ii) Describe various modes of failure in Gravity Dam
 - iii) Drainage Gallery & its effect on uplift pressure.
 - b) A masonry dam (specific gravity = 2.25) with vertical face has top width 4 m, bottom width 20 m and height 24 m. FRL is 3 m below top. Determine the factor of safety against overturning and stresses developed at the toe and heel of the dam.

OR

- **6.** a) What are the methods of seepage control in an earthen dam? Explain with the help of neat sketches.
 - b) Flow net was prepared for a 50 m high earth dam having 2.5 m free board, No. of potential drops = 20 and no. of flow channels = 5. If the dam is provided with 45 m horizontal filter at downstream side, determine the discharge per m length of the dam. Coefficient of permeability of the dam is 2.5 x 10³ cm/sec.
- 7. a) Explain the design criteria for Ogee Spillway?
 - b) Explain Bligh's Creep theory for design of weirs on permeable foundations.

OR

7

7

7

	8.	a)	Explain with a neat sketch, the functions of any two. i) Divide wall ii) Silt excluder iii) Undersluices	6
		b)	Distinguish between a Chute spillway and a side channel spillway. Under what circumstances are they used?	7
9.	a)	Design an irrigation channel in fine alluvium to convey a discharge of 30 cumec with bed slope of 1 in 5000. $CVR = 0.9$ and Kutter's $N = 0.0225$. Assume side slopes of 0.5:1.	7	
		b)	Using Lacey's theory, design a channel section for the following data: Discharage = $40\text{m}^3/\text{sec}$, Silt factor = 1, Side slopes = 1 V: 0.5H.	7
			OR	
5	10.	a)	Design a concrete-lined channel to carry a discharge of 100 cumec with a velocity not exceeding 2 m/s. Bed slope = $1/2500$, side slopes = $5/4$ horizontal: 1 vertical, n = 0.014.	7
~		b)	Explain any one with neat sketch. i) Canal lining ii) Balanced depth of a lined canal	7
	11	a)	Write Short notes on any one. i) Canal falls ii) Canal regulators	6
		b)	Write Short notes on Any One.	7
)		0	i) Aqueduct and Super passageii) Canal escapesOR	1
	12.	a)	What is waterlogging? Write the causes, effects and remedial measures of waterlogging.	6
		b)	(0/1)	7

KNT/KW/16/7529

OFS OFS OFS 058 058