B.E. Eighth Semester (Civil Engineering) (C.B.S.)

Elective - II : Advanced Structural Analysis

P. Pages: 4
Time: Three Hours

KNT/KW/16/7530

Max. Marks: 80

13

13

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Illustrate your answers whenever necessary with the help of neat sketches.
- 10. Use of non programmable calculator is permitted.
- 1. Write a computer programme for beams on elastic foundation by giving suitable examples.

OR

2. Derive an expression for semi – circular beam subjected to uniformly distributed load 'w' in $\frac{kN}{m}$ and simply supported by three columns spaced equally. Refer Fig. 1.

Find out max. bending moment and max. torsional moment at X.

Analyse the plane frame shown in fig. 2. $E = 22 \times 10^6 \text{kN/m}^2$, C/S area for $AB = 0.6 \text{m} \times 0.3 \text{m}$ and C/S area for $BC = 0.3 \text{m} \times 0.5 \text{m}$.

OR

P.T.O

14

Find displacement at node 2 of the grid structure shown in fig. 4 member 1 is loaded with uniformly distributed load of 20 kN/m and on member 2 concentrated load of 50 kN is acting at centre.

$$E = 2.54 \times 10^7 \text{ kN/m}^2$$
, $G = 8.8 \times 10^6 \text{ kN/m}^2$

$$\frac{c}{s}$$
 of beams = 300×600 mm and Ixx = $\frac{db^3}{3}$.

6. Analyse the plane grid shown in fig. 5 using direct stiffness method.

$$E = 2 \times 10^5 \text{ MPa}, \text{ Iyy} = 1500 \text{ cm}^4$$

$$G = 1 \times 10^5 \text{ MPa}, \quad Ixx = 2000 \text{ cm}^4$$

KNT/KW/16/7530

7.	5	Explain	the following terms in	detail.	370	
());	2)	i) D'.	Alemberts Principle		3	
		ii) Inc	ertia force	203	3	
		iii) Eq	quation of motion	WP	4	
		iv) Sii	ngle degree of freedom	system.	4	
OR						
8.	Explain the following terms in detail.					
		i) Da	amping		3	
(6)		ii) Na	atural Frequency	20	4	
000))	iii) Tr	ansmissibility ratio	050) 4	
		iv) Ef	fect of Gravitation force		3	
9.	a)	a) Explain "DUHAMEL's" integral in references to impulsive loading and derive the expression for DLF for a rectangular load.				
	b)	Draw the first three mode shapes for a beam fixed at one end and free at the other. Use Euler – Bernoulli approach.				
		- 6	9 (A) S	OR		
10.	0. a) Explain "DUHAMEL's" integral in references to impulsive loading and derive the expression for DLF for triangular load.					
	b) Explain approximate method for analysis of impulsive loading.				6	
11.	a)	a) What are different IS 1893 code based procedure for Seismic Analysis? Explain Codal coefficient method in detail.				
	b) Explain need of Earthquake analysis of structure and need of standard code.				6	
				OR		
12.		to IS 1893. The preliminary day 1. Type of structure		ding using equivalent static lateral force method confirming ta required for the analysis of frame is as follows: Multistorey rigid jointed plane frame (special RC moment resisting frame) IV (Table 2, IS 1893 (Part 1): 2002)	ing 13	
TE	7((3. Nu	umber of Stories	Four, $(G+3)$	263	
)\<	9)		oor height fill wall	3.5 m250 mm thick including plaster in longitudinal and150 mm in transverse direction.	9)G	
			aposed load	3.5kN/m ² Congrete (M 20) and Poinforcement (Fe 415)		
			aterials	Concrete (M 20) and Reinforcement (Fe 415)		
www.solveout.in P.T.O						

8. Sizes of columns 250 mm×450 mm

9. Sizes of beams 250 mm×400 mm in longitudinal and 250 mm×350 mm

in transverse direction.

10. Depth of slab 100 mm thick

11. Specific weight of RCC 25kN/m³

12. Specific weight of infill 20kN/m^3

13. Type of soil Rock

Refer fig. 6A & 6 B.

