B.E. Eighth Semester (Electronics Engineering) (C.B.S.)

Elective - II : Satellite Communication

P. Pages: 2 Time: Three Hours			KNT/KW/16/755 4 * 0 2 5 6 * Max. Marks : 8			
	Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9.		All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Assume suitable data whenever necessary. Illustrate your answers whenever necessary with the help of neat sketches.			
1.	a)	State and	d prove Kepler's first law of planetary motion.	8		
	b)		te is in an orbit with a perigee of 1000 km and an apogee of 4000 km. Using a mean lius of 6378.14 km, find the period of the orbit in hours, minutes, and seconds. OR	6		
2.	a)	Explain	telemetry tracking and command system.	6		
	b)	What is	attitude & orbit control system. Explain in detail.	8		
3.	a) b)	An earth used to 79k whe station	he link equation and explain each term used in link equation. In station antenna has a diameter of 30m, has an overall efficiency of 68%, and is receive a signal at 4150 MHz. At this frequency, the system noise temperature in the antenna points at the satellite at an elevation angle of 28° what is the earth G/T ratio under these conditions? If heavy rain causes the sky temperature to so that the system noise temperature rises to 88k, what is the new G/T value?	7 6		
			OR			
4.	a)	Write th	e steps to design a satellite link designed C/N.	8		
	b)		ne the total noise power for a receiver with an input bandwidth of $40~\text{MH}_{z}$ and nt noise temperature of $800~\text{K}$.	5		
5.	a)	Explain disadvar	the FDMA technique used in satellite communication with advantages and stages.	7		
TE	b)	Draw an	d explain the TDMA frame structure.	6		
)/<	9)		OR			
6.	a)	What do	you mean by spread spectrum techniques? Explain in detail.	7		

KNT/KW/16/7554

6	16	b)	Write short notes on DAMA	6
	7.	a)	Explain propagation effect and their impact on satellite.	7
		b)	Write short notes on Tropospheric multipath and scintillation effect.	6
			OR	
	8.	a)	Explain the process of attenuation calculation.	7
		b)	Write short notes on effect of rain on antenna noise temperature.	6
	9.	a)	Explain the term channel capacity with suitable expression.	7
		b)	The generator matrix for a (6,3) block code is shown below. obtain all code words.	7
E	0	3	[1 0 0:0 1 1]	
15)(ソ	$G = \begin{bmatrix} 1 & 0 & 0 : 0 & 1 & 1 \\ 0 & 1 & 0 : 1 & 0 & 1 \\ 0 & 0 & 1 : 1 & 1 & 0 \end{bmatrix}$	
)			1(0)	
			OR	
	10.	a)	Differentiate between block code and convolution code. Explain the error detecting and correcting capability of linear block code.	8
		b)	Explain in brief implementation of error detection on satellite links.	6
	11.	a)	Write short notes on	13
		2	1) HPA	E
5)		V)	2) LNA)<
			3) Factors affecting orbit utilization.	
			4) RF Multiplexing.	
			OR	
	12.	a)	Explain Earth station design requirement in detail.	6
		b)	What is tracking, why tracking is required. Explain all the techniques with neat sketch.	7
	TE	3 (6	******	9
(1)	15	2)(9	9
10				