B.E. Fourth Semester (Computer Science Engineering) (C.B.S.)

Theoretical Foundation of Computer Science Paper - IV
P. Pages : 4

Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Assume suitable data whenever necessary.
9. Illustrate your answers whenever necessary with the help of neat sketches.

1. a) Which type of grammar is more powerful and why?
b) Describe the concept of pigeon-hole principal with example?
c) Explain following terms:
1) Star closure of language 2) Positive closure of language 3) String \& length of string.

OR

2. a) Explain following terms:
1) Context sensitive grammar
2) Context free grammar
and also justify why context free grammar is context sensitive but vice versa is not possible?
b) With the help of mathematical induction prove that -
3) $1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}=\frac{n \times(n+1)(2 n+1)}{6}$
4) $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots \ldots+\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)}{4}$
3. a) Design a DFA for following
1) For a string over $\langle 0,1\rangle$ divisible by 3 binary
2) $L=\left\{\begin{array}{l|l}W & \begin{array}{l}W=\{a, b\}^{*} \\ n(a) \text { of } W(\bmod 4)= \\ n(b) \text { of } W(\bmod 4)\end{array}\end{array}\right\}$

Where $n(a)=n o$. of a's
$\mathrm{n}(\mathrm{b})=$ no. of b 's
3) For a string which should contain 'ab' as substring $\sum=\{a, b\}^{*}$
4) For a string which should start with 1 and end with 01 . Assume $\sum=\{0,1\}$

OR

4. a) Convert the following mealy machine into equivalent Moore machine?

b) Minimize the following DFA.

	State	a	b
\rightarrow	q_{0}	q_{1}	q_{0}
	q_{1}	q_{6}	q_{2}
	q_{2}	q_{3}	q_{1}
*	(43)	q_{3}	q_{0}

q_{4}	q_{3}	q_{5}
q_{5}	q_{6}	q_{4}
q_{6}	q_{5}	q_{6}
q_{7}	q_{6}	q_{3}

5. a) Obtain the regular expression from following grammar.

$$
\begin{aligned}
& \mathrm{S} \rightarrow 1 \mathrm{~A}|\mathrm{oC}| \mathrm{o} \\
& \mathrm{~A} \rightarrow 1 \mathrm{~B} \\
& \mathrm{~B} \rightarrow 1 \mathrm{~B} \mid 1 \mathrm{D} \\
& \mathrm{C} \rightarrow \mathrm{O} \\
& \mathrm{D} \rightarrow \mathrm{oD} \mid 01
\end{aligned}
$$

b) Find the regular expression for the given transition diagram using Arden's Theorem?

c) Match the following pairs

Group A	Group B
Left linear Grammar	$\mathrm{S} \rightarrow \mathrm{aSSb}\|\mathrm{bSSa}\| \epsilon$
Right linear Grammar	$\mathrm{S} \rightarrow \mathrm{Ba}\|\mathrm{aa}\| \mathrm{Saa}$
Ambiguous Grammar	$\mathrm{S} \rightarrow \mathrm{abA}\|\mathrm{aA}\| \mathrm{b}$

6. a) Find the minimum state DFA for following Regular Expression

$$
a b^{*}(a b)^{*}(a+b) b^{*}+b
$$

b) Convert the grammar into Chomsky Normal Form.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABa} \\
& \mathrm{~A} \rightarrow \mathrm{aab} \\
& \mathrm{~B} \rightarrow \mathrm{Ab}
\end{aligned}
$$

7. a) Differentiate between NPDA \& DPDA.
b) Construct CFG from following PDA.
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{z}_{0}\right)=\left(\mathrm{q}_{0}, \mathrm{xz}_{0}\right)$
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{x}\right)=\left(\mathrm{q}_{0}, \mathrm{xx}\right)$
$\delta\left(\mathrm{q}_{0}, 0, \mathrm{x}\right)=\left(\mathrm{q}_{1}, \mathrm{x}\right)$
$\delta\left(\mathrm{q}_{0}, \in, \mathrm{z}_{0}\right)=\left(\mathrm{q}_{0}, \in\right)$
$\delta\left(\mathrm{q}_{1}, 1, \mathrm{x}\right)=\left(\mathrm{q}_{1}, \in\right)$
$\delta\left(\mathrm{q}_{1}, 0, \mathrm{z}_{0}\right)=\left(\mathrm{q}_{0}, \mathrm{z}_{0}\right)$
OR
8. a) Explain the model of PDA.
b) Construct PDA from the given grammar.
$\mathrm{E} \rightarrow+\mathrm{EE}|* \mathrm{EE}| \$ \mathrm{TF}$
$\mathrm{T} \rightarrow+\mathrm{T} \mid+$
$\mathrm{F} \rightarrow * \mathrm{~F} \mid+$
c) Construct PDA for following .
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{m}} \mathrm{d}^{\mathrm{n}} \mid \mathrm{n}, \mathrm{m} \geq 1\right\}$
9. a) Define the model of Turing machine and explain it's tuples?
b) Construct Turing Machine for

Input $=\$ W \$$
output = \$ W \$ W
Where $\mathrm{W}=\{\mathrm{a}, \mathrm{b}\}^{+}$

OR

10. a) Explain the types of Turing Machine?
b) Design Turing Machine to convert 111 into 101 .
11. a) Explain the following terms.
1) Decidability and solvability.
2) Recursive function.
3) Post correspondence problem. 4
4) Halting problem.

OR

12. a) Explain the properties of Recursively Enumerable language.
b) Define Ackermann's Function \& compute
