## B.E. Fourth Semester (Computer Science Engineering) (C.B.S.)

## Theoretical Foundation of Computer Science

Paper - IV

P. Pages: 4
Time: Three Hours



KNT/KW/16/7296

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Illustrate your answers whenever necessary with the help of neat sketches.
- **1.** a) Which type of grammar is more powerful and why?

5

b) Describe the concept of pigeon-hole principal with example?

5

3

- c) Explain following terms:
  - 1) Star closure of language 2) Positive closure of language 3) String & length of string.

OR

**2.** a) Explain following terms:

7

- 1) Context sensitive grammar
- 2) Context free grammar

and also justify why context free grammar is context sensitive but vice versa is not possible?

b) With the help of mathematical induction prove that -

6

1) 
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n \times (n+1)(2n+1)}{6}$$

2) 
$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

**3.** a) Design a DFA for following

1) For a string over (0,1) divisible by 3 binary

5

3

2) 
$$L = \begin{cases} W & \{a,b\}^* \\ n(a) & \text{of } W(\text{mod } 4) = \\ n(b) & \text{of } W(\text{mod } 4) \end{cases}$$

Where n(a) = no. of a's n(b) = no. of b's

3) For a string which should contain 'ab' as substring  $\sum = \{a, b\}^*$ 

2

4) For a string which should start with 1 and end with 01. Assume  $\sum = \{0,1\}$ 

4

OR

4. a) Convert the following mealy machine into equivalent Moore machine?



b) Minimize the following DFA.

|               | State                 | a              | b                     |
|---------------|-----------------------|----------------|-----------------------|
| $\rightarrow$ | $q_0$                 | $q_1$          | $q_0$                 |
|               | $q_1$                 | $q_6$          | $q_2$                 |
|               | $q_2$                 | $q_3$          | $q_1$                 |
| *             | $q_3$                 | $q_3$          | $q_0$                 |
|               | $q_4$                 | $q_3$          | <b>q</b> <sub>5</sub> |
|               | $q_5$                 | $q_6$          | $q_4$                 |
|               | $q_6$                 | q <sub>5</sub> | $q_6$                 |
| 1             | <b>q</b> <sub>7</sub> | $q_6$          | $q_3$                 |

**5.** a) Obtain the regular expression from following grammar.

$$S \rightarrow 1A \mid oC \mid o$$

$$A \rightarrow IB$$

$$B \rightarrow 1B \mid 1D$$

$$C \rightarrow O$$

$$D \rightarrow oD \mid 01$$

b) Find the regular expression for the given transition diagram using Arden's Theorem?



| Transfer the Tollo Will S Pulls |                                         |  |
|---------------------------------|-----------------------------------------|--|
| Group A                         | Group B                                 |  |
| Left linear Grammar             | $S \rightarrow aSSb \mid bSSa \mid \in$ |  |
| Right linear Grammar            | $S \rightarrow Ba \mid aa \mid Saa$     |  |
| Ambiguous Grammar               | $S \rightarrow abA \mid aA \mid b$      |  |

6. a) Find the minimum state DFA for following Regular Expression  $ab^* (ab)^* (a + b) b^* + b$ 

8

b) Convert the grammar into Chomsky Normal Form.

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ab$$

**7.** a) Differentiate between NPDA & DPDA.

5

b) Construct CFG from following PDA.

$$\delta(q_0, 1, z_0) = (q_0, x z_0)$$

$$\delta(q_0, 1, x) = (q_0, xx)$$

$$\delta(q_0, 0, x) = (q_1, x)$$

$$\delta\left(\mathbf{q}_{0},\in,\mathbf{z}_{0}\right)\!=\!\left(\mathbf{q}_{0},\in\right)$$

$$\delta\left(\,\mathbf{q}_{1},\mathbf{1},\mathbf{x}\right)\quad=\,\left(\mathbf{q}_{1},\in\right)$$

$$\delta(q_1, 0, z_0) = (q_0, z_0)$$

## OR

**8.** a) Explain the model of PDA.

$$E \rightarrow + EE \mid *EE \mid $TF$$

$$T \rightarrow + T \mid +$$

$$F \rightarrow *F | +$$

$$L = \{a^n b^m c^m d^n \mid n, m \ge 1\}$$

6

**9.** a) Define the model of Turing machine and explain it's tuples?

5

Input = 
$$W$$

$$output =$$
\$ W \$ W

Where 
$$W=\{a,b\}^+$$

OR

| 10.   | a) | Explain the types of Turing Machine? 6                          |
|-------|----|-----------------------------------------------------------------|
| (0)   | b) | Design Turing Machine to convert 111 into 101.                  |
| 11.   | a) | Explain the following terms.                                    |
|       |    | 1) Decidability and solvability. 3                              |
|       |    | 2) Recursive function. 2                                        |
|       |    | 3) Post correspondence problem. 4                               |
|       |    | 4) Halting problem. 4                                           |
|       |    | OR                                                              |
| 12.   | a) | Explain the properties of Recursively Enumerable language. 7    |
| 150   | b) | Define Ackermann's Function & compute A(1,1), A(2,1) and A(2,2) |
| 2     |    | ******                                                          |
|       |    |                                                                 |
|       |    |                                                                 |
|       |    |                                                                 |
|       |    |                                                                 |
|       |    | 50 MMM.50 050 050                                               |
|       | 0  | WWW. 58 028                                                     |
| 9     |    | 4,00                                                            |
|       |    |                                                                 |
|       |    |                                                                 |
|       |    | 058                                                             |
|       |    |                                                                 |
| OF    | 16 |                                                                 |
| OF    | 7  |                                                                 |
| (//)< | 9) | 3 053                                                           |
|       |    |                                                                 |
| 1     |    |                                                                 |