Find Fourier sine transform of $\frac{e^{-ax}}{a}$. b) Draw the graph of the function 6 $f(x) = \begin{cases} -1, & -2 \le x \le -1 \\ x, & -1 \le x \le 1 \\ 1, & 1 \le x \le 2 \end{cases}$ Discuss the symmetry and find the Fourier series for the function. 5. Prove that $Z\left\{n^{p}\right\} = -Z\frac{d}{dz}Z\left\{n^{p-1}\right\}$, p is a positive integer, hence find $Z\left\{n\right\}$. a) 6 b) Prove that $\frac{1}{n!} * \frac{1}{n!} = \frac{2^n}{n!}$ where * is a convolution operation. OR Find inverse Z - transform of $\frac{Z^2 + Z}{(Z-1)(Z^2+1)}$. 6. a) 6 By using Z - transform solve the difference equation b) 6 $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, given $y_0 = y_1 = 0$. If $u = y^3 - 3x^2y$, show that u is harmonic function. Find V and analytic function. 7. 7 a) Evaluate $\int_{C} \frac{\cos \pi Z^2}{(Z-1)(Z-2)} dz$, where C is circle |Z|=3. b) OR Expand f (Z) = $\frac{Z^2 - 1}{(Z+2)(Z+3)}$ in the region 8. 7 a) |Z| < 2i) 2 < |Z| < 3 and ii) iii) |Z| > 3b) Evaluate $\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} \, d\theta$ by contour Integration. 7 Find eigen vectors for the matrix a) $\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ 22

KNT/KW/16/7232/7237

If $A = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$, verify $2\sin A = (\sin 2)A$ by Sylvester's theorem.

- c)
- Determine the largest eigen value and corresponding eigen vector of the matrix :

6

6

6

6

6

6

6

 $\mathbf{A} = \begin{vmatrix} -4 & -5 \\ 1 & 2 \end{vmatrix}$

10. a)

b)

c)

Verify Cayley Hamilton's Theorem for $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$ and hence find A^{-1} .

Are the following vectors are linearly dependent? If so, find the relation between them

OR

$$X_1 = [1,1,1,3], X_2 = [1,2,3,4], X_3 = [2,3,4,7]$$

Solve by matrix method $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} - 10y = 0$ given y(0) = 3, y'(0) = 15.

11. a) Each of three identical jewellary boxes has two drawers. In each drawer of the first box there is a gold watch. In each drawer of the second box there is a silver watch. In one drawer of the third box there is a gold watch while in other there is a silver watch. If we select a box at random, open one of the drawer and find it to contain a silver watch. What is the probability that the other drawers has gold watch.

b) Let X be a random variable having density function $f(x) = \begin{cases} cx : 0 \le x \le 2\\ 0 : otherwise \end{cases}$

find (i) the constant C, (ii) $P(\frac{1}{2} < x < \frac{3}{2})$ and (iii) the distribution function.

OR

12. a) A random variable X has prob. density function

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{, } a \le x \le b \\ 0 & \text{, otherwise} \end{cases}$$

find (i) mean of X (ii) variance of X (iii) first two moments about origin.

b) In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and S.D. of the distribution.

KNT/KW/16/7232/7237

