B.E.(Computer Science \& Engineering (New) / Computer Technology) Semester Third (C.B.S.)

Applied Mathematics

Paper - I

P. Pages: 3

KNT/KW/16/7232/7237

Notes: 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Assume suitable data whenever necessary.
9. Use of non programmable calculator is permitted.

1. a) If $L\{f(t)\}=F(S)$ then prove that
$\mathrm{L}\left\{\mathrm{f}^{\prime}(\mathrm{t})\right\}=\mathrm{sL}\{\mathrm{f}(\mathrm{t})\}-\mathrm{f}(0)$
and hence find $L\left\{\frac{d}{d t}\left(\frac{\sin t}{t}\right)\right\}$.
b) Find $L^{-1}\left\{\frac{1}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}\right\}$ by Convolution Theorem.

OR

2. a)

Express $f(t)= \begin{cases}t-1 ; & 1<t<2 \\ 3-t ; & 2<t<3\end{cases}$
in terms of unit step function and find its Laplace transform.
b)

Solve $\frac{d y}{d t}+2 y+\int_{0}^{t} y d t=\sin t$, given $y(0)=1$ by using Laplace Transform.
3. a) Obtain Fourier Series for $f(x)=1+\frac{2 \mathrm{x}}{\pi} ;-\pi \leq \mathrm{x} \leq 0$

$$
=1-\frac{2 \mathrm{x}}{\pi} ; 0 \leq \mathrm{x} \leq \pi
$$

Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . .=\frac{\pi^{2}}{8}$
b) Solve the integral equation

$$
\int_{0}^{\infty} \mathrm{f}(\mathrm{t}) \cos \lambda \mathrm{t} \mathrm{dt}= \begin{cases}1, & 0 \leq \lambda<1 \\ 2, & 1 \leq \lambda<2 \\ 0, & \lambda \geq 2\end{cases}
$$

OR

4. a)

Find Fourier sine transform of $\frac{e^{-a x}}{x}$.
b) Draw the graph of the function
$f(x)=\left\{\begin{array}{lc}-1, & -2 \leq x \leq-1 \\ x, & -1 \leq x \leq 1 \\ 1, & 1 \leq x \leq 2\end{array}\right.$
Discuss the symmetry and find the Fourier series for the function.
5. a) Prove that $Z\left\{n^{p}\right\}=-Z \frac{d}{d z} Z\left\{n^{p-1}\right\}$, p is a positive integer, hence find $Z\{n\}$.
b) Prove that $\frac{1}{n!} * \frac{1}{n!}=\frac{2^{n}}{n!}$ where $*$ is a convolution operation.

OR

6. a)

Find inverse Z - transform of $\frac{Z^{2}+Z}{(Z-1)\left(Z^{2}+1\right)}$.
b) By using Z - transform solve the difference equation
$y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$, given $y_{0}=y_{1}=0$.
7. a) If $u=y^{3}-3 x^{2} y$, show that u is harmonic function. Find V and analytic function.
b) Evaluate $\int_{C} \frac{\cos \pi \mathrm{Z}^{2}}{(\mathrm{Z}-1)(\mathrm{Z}-2)} \mathrm{dz}$, where C is circle $|\mathrm{Z}|=3$.

OR

8. a) Expand $f(Z)=\frac{\mathrm{Z}^{2}-1}{(\mathrm{Z}+2)(\mathrm{Z}+3)}$ in the region
i) $|Z|<2$
ii) $2<|\mathrm{Z}|<3$ and
iii) $|Z|>3$
b) Evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$ by contour Integration.

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

b) If $\mathrm{A}=\left[\begin{array}{cc}-1 & 3 \\ 1 & 1\end{array}\right]$, verify $2 \sin \mathrm{~A}=(\sin 2) \mathrm{A}$ by Sylvester's theorem.
c) Determine the largest eigen value and corresponding eigen vector of the matrix :
$A=\left[\begin{array}{cc}-4 & -5 \\ 1 & 2\end{array}\right]$

OR

10. a)

Verify Cayley Hamilton's Theorem for $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1\end{array}\right]$ and hence find A^{-1}.
b) Are the following vectors are linearly dependent? If so, find the relation between them

$$
X_{1}=[1,1,1,3], X_{2}=[1,2,3,4], X_{3}=[2,3,4,7]
$$

c) Solve by matrix method $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}-3 \frac{\mathrm{dy}}{\mathrm{dt}}-10 \mathrm{y}=0$ given $\mathrm{y}(0)=3, \mathrm{y}^{\prime}(0)=15$.
11. a) Each of three identical jewellary boxes has two drawers. In each drawer of the first box there is a gold watch. In each drawer of the second box there is a silver watch. In one drawer of the third box there is a gold watch while in other there is a silver watch. If we select a box at random, open one of the drawer and find it to contain a silver watch. What is the probability that the other drawers has gold watch.
b) Let X be a random variable having density function
$f(x)= \begin{cases}c x: & 0 \leq x \leq 2 \\ 0 & : \text { otherwise }\end{cases}$
find (i) the constant C , (ii) $\mathrm{P}(1 / 2<\mathrm{x}<3 / 2)$ and (iii) the distribution function.

OR

12. a) A random variable X has prob. density function
$f(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}$
find (i) mean of X (ii) variance of X (iii) first two moments about origin.
b) In a normal distribution 31% of the items are under 45 and 8% are over 64 . Find the mean and S.D. of the distribution.

