Faculty of Engineering & Technology First Semester B.E. (C.B.S.) Examination ENGINEERING PHYSICS

Paper—II

Time: Two Hours]

[Maximum Marks: 40

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry equal marks.
- (2) Solve FOUR questions as follows:
 - (i) Q. No. 1 OR Q. No. 2
 - (ii) Q. No. 3 OR Q. No. 4
 - (iii) Q. No. 5 OR Q. No. 6
 - (iv) Q. No. 7 OR Q. No. 8
- (3) Assume suitable data wherever necessary.
- (4) Use of non-programmable electronic calculator is permitted.

List of Constants

Planck's Constant "h" = 6.63×10^{-34} J.S

Velocity of Light "c" = 3×10^8 m/s

Charge on Electron "e" = 1.602×10^{-19} C

Mass of Electron "m" = 9.11×10^{-31} kg.

MHB-45247

(Contd.)

1. (a	of X-ray photon when it is scattered
(b)	at rest. What are the causes of existence of modified and un-modified components in Compton
(c)	scattering? MeV is scattered through
	OR
$\binom{2}{2}$	State the properties of matter waves. 2
$\begin{pmatrix} 2. & (a) \\ & (b) \end{pmatrix}$	Discuss in detail an experiment that commiss the
1	existence of de-Broglie matter waves 4
) (e)	What would be the de-Broglie wavelength
	associated with:
اله فاعترشني رز المجيد	(i) 2000 kg car having a constant speed of
-	25 m/s (ii) 80 kg scooter having a speed of 10 m/s.
	(ii) 80 kg scooter having a speed of 10 m/s. Give your conclusion.
3. (a)	Dinainle 2 Is this min in the
3. (a)	the outcome of the wave description of a
= ₁	particle? Describe diffraction of Electrons by
	Single Slit Experiment to prove its validity. 5
(b)	Show that the phase velocity of a de-Broglie wave
* ~ ~	is greater than the velocity of light, but group
	velocity is equal to velocity of the particle with
	which the wave is associated.
(c)	
	of an electron confined to a box of 10 ⁻⁸ m length.
	OR
MHB—452	
	(Coma)

www.solveout.in

4. (a) A free particle of mass "m" is kept in a rec			
		box of length "L". Considering one dimensional	
		motion, obtain an expression of discrete energy	
		of particle. Show that energy of particles are	
		quantized. 5	

- (b) State the properties of wave function " ψ ". 2
- Calculate the lowest three permissible energies of an electron if it is bound by an infinite square well potential of width 2.5×10⁻¹⁰ m.
 - (a) Define atomic radius and packing fraction.
 Calculate the atomic radii and packing fractions
 for Body Centered and Face Centered Cubic Unit
 Cell.
 - (b) What do you understand by Miller Indices of a crystal plane? Obtain the relation between interplanar spacing and Miller indices of plane in Cubic Unit Cell.
 - (e) For an FCC cubic crystal, the interplanar spacing of (110) plane is 2 Å. Calculate the atomic radius.

OR -

- 6. (a) Calculate number of atoms per unit cell in Simple Cubic and Body Centered Cubic Unit Cell. Show that atomic density of BCC is double than SC-unit cell.
 - (b) Derive Bragg's law for X-ray diffraction in crystals.

 State any one application of it.

 (Contd.)

5.

(c)	Bragg's Spectrometer is set for reflection to be received by the determinant angle 10°. Calculate the angle three detector is rotated to receive the reflection from the same face of	ough which the e second order crystal.
7. (a)	Discuss energy band structures insulators and semiconductors. Giv of the general properties and cl	e a brief account naracteristics of
(b)	What do you mean by intrinsic someontration in an intrinsic sen	
(c)	Find the resistance of an intringrod 1 cm × 1 mm × 1 mm at 3	
· · · · · · · · · · · · · · · · · · ·	For Ge, $n_i = 2.5 \times 10^{13} / \text{cm}^3$, $\mu_h = 1900 \text{ cm}^2/\text{V.S.}$	= 3900 cm ² /V.S,
- d 11-	OR	
8. (a)	Draw neat and clean energy be PN-junction in:	and diagrams of
	(i) Unbiased condition	3
3 3 3 4	(ii) Forward bias condition.	
(b)	Explain the phenomenon of Hall an expression of Hall voltage rectangular specimen of conduct	ge developed in
(c)	The Hall coefficient of certain is found to be -7.5×10^{-5} m temperature. If the conductivity 200 mho/m, calculate density and their mobility.	y is found to be
мнв <u>—45</u> 2	247 4	18050