B.E. (Electronics Telecommunication / Electronics Communication Engineering) Fifth Semester (C.B.S.)

Antenna & Wave Propagation

TKN/KS/16/7416

Tim	ages ne : Thre	e Hours	* 0 * 6 1 * Max. Mark	Max. Marks : 80	
	Notes	3: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Due credit will be given to neatness and adequate dimensions. Assume suitable data whenever necessary. Illustrate your answers whenever necessary with the help of neat sketches. Use of non programmable calculator is permitted. Any other instructions use of smith chart is permitted.		
1.	a)	Derive i) Op	the voltage and current equation when the line is. ben circuited at far end. ii) Short circuited at far end.	8	
	b)	A trans resistan	mission line with a characteristic impedance of 200 Ω is terminated in a purely ce load, where U _{max} = 6 kv and V _{min} = 3 kv. Calculate the load impedance.	6	
2.	a)	Write a terms o	short note on standing wave ratio (SWR) and derive the expression for SWR in f reflection coefficient.	8	
	b)	A 100 g $\alpha = 0.0$ Calcula ZO = 5 smith cl	Ω transmission line, which is distortionless has the attenuation constant, $M_{\rm P}/m$, phase velocity, $V_{\rm P} = 0.9 \times 10^8$ m/s and a frequency of 1 GHz. te the line parameter R, L, C and G. The same transmission line has $M_{\rm O} \Omega$, $ZL = 150 + j 150 \Omega$ find out SWR and show calculated value of SWR on hart.	6	
3.	a)	Draw t contribu	he charge and current distribution for a Hertizian dipole and explain how they ite for radiations.	7	
	b)	Calcula	te the radiation resistance of an infinitesimal dipole of length $\lambda/50$ in free space.	6	
4.	a)	Write a i) Ra ii) Ra iii) Di iv) Lin	short note on any three. diation field from loop Antenna. diation resistance of short dipole. fferent field zones. near wire antenna's.	13	
5.	a)	Derive spacing	the complete expressions for array of n isotropic sources of equal Amplitude and for Broadside case.	7	
	b)	Define	pattern multiplication in brief. OR	6	

P. Pages: 2

6.	a)	Explain the principle of operation of Yagi-Uda array antenna with neat schematic diagram.	7		
	b)	Design a five element broad side array. Which has the optimum pattern for a side lobe level of 20dB. the spacing between element has to be $\lambda/2$.			
7.	a)	Explain the different feeding methods associated with microtrip antenna. 7			
	b)	Design a rectangular microstrip antenna using a substrate (FR ₄) with dielectric constant of 4.4, $h = 1.6mm$ and tan $d = 0.002$ so as to resonate at 2 GHz.			
8.		Write a short note on any three .			
		 i) Methods of analysis of microstrip antenna. ii) Fringing effects of microstrip antenna. iii) Transmission line model of microstrip antenna. iv) Applications of microstrip antenna. 			
9.	a)	What are the different types of Horn antenna? Discuss the salient features of horn antenna. 7			
	b)	The aperture dimension of a pyramidal horn are 12 x 6cm. It is operating at a frequency of 6 GHz. Find the beam width, power gain and directivity.			
10		Write a short notes on any three .	13		
10.		 i) Aperture Antenna Applications. ii) Corner reflector. iii) Reciprocity theorem. iv) Cassegrain feed. 	10		
11.	a)	Describe the space wave propagation and explain the principle of communication by troposcatter.			
	b)	Discuss the various sources of errors in antenna measurement. OR			
12.		Write a short notes on any two.			
		 i) Radiation pattern measurement. ii) Maximum usable Frequency (MUF). iii) Noise and Interference in radio wave propagation. 			
