Faculty of Engineering \& Technology
 Fifth Semester B.E. (Computer Science Engg.)
 (C.B.S.) Examination
 DESIGN AND ANALYSIS OF ALGORITHMS

Time : Three Hours]
[Maximum Marks

INSTRUCTIONS TO CANDIDATES

(1) All questions carry marks as indicated.
(2) Solve SIX questions as follows :

Que. No. 1 OR Que. No. 2
Que. No. 3 OR Que. No. 4
Que. No. 5 OR Que. No. 6
Que. No. 7 OR Que. No. 8
Que. No. 9 OR Que. No. 10
Que. No. 11 OR Que. No. 12
(3) Due credit will be given to neatness and adequate dimensions.
(4) Illustrate the answers with necessary figures/ drawings wherever necessary.

1. (a) Solve the following recurrence

$$
\operatorname{tn}=\left\{\begin{array}{l}
1 \quad \text { if } \quad \mathrm{n}=1 \\
2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}
\end{array} \text { otherwise } .\right.
$$

(b) Solve non homogenous recurrence :

$$
\begin{aligned}
T(n) & =n \quad \text { if } \quad n=0 & & \text { or } \quad n=1 \\
& =\operatorname{st}(n-1)-6 n & & \text { otherwise. }
\end{aligned}
$$

(c) Define algorithm. Explain the characteristics of algorithm.

OR

2. (a) Using master method, solve the following recurrence and also find the values of constant involved :
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 4)+\sqrt{\mathrm{n}}+4$ for $\mathrm{n} \geq 4$ and $\mathrm{T}(1)=4$.
(b) $\mathrm{tn}=\left\{\begin{array}{l}2 \quad \text { if } \quad \mathrm{n}=0 \\ 3 \mathrm{t}_{\mathrm{n}-1}+\mathrm{n}+2^{\mathrm{n}}\end{array}\right.$ otherwise. 4
(c) State the difference between recursive and iterative method.
3. (a) Implement Biotonic sorting network for following set of information. Also explain its advantages :

$$
17582693 .
$$

6
(b) Comment on the minimum complexity of sorting algorithm is $0(n \log n)$ in best case and $O\left(n^{2}\right)$ in worst case.
4. (a) What are different asymptotic notations ? Explain them briefly. For the following equation find values of constant using various approaches :
(i) $3 n+2$
(ii) $10 \mathrm{n}^{2}+4 \mathrm{n}+2$
(b) Implement insertion sort on following array :

$$
18,12,44,64,76,15,129,20 .
$$

Write recursive algorithm.
5. (a) Explain the difference between Greedy and Divide and Conquer method of algorithm design. 4
(b) For the following sequence of objects find the profit by three method capacity $=30$, Number of objects $=07$

Object	Weight	Profit	
1	4	20	
2	6	15	
3	10	20	
4	14	28	
5	2	8	
6	8	18	
7	2	6	9
	OR		
	3		(Contd.)

6. (a) Write algorithm to find out minimum cost spanning tree for the following graph, using PRIM's algorithm : 7

(b) Draw the merge and split tree using Merge sorting for array size of 15 . Write recurrence equation for merge sort algorithm.
7. (a) Draw optaimal binary search tree for the following parameter :

\mathbf{I}	$\mathbf{p}_{\mathbf{i}}$	$\mathbf{q}_{\mathbf{i}}$	
0	-	0.05	
1	0.15	0.10	
2	0.10	0.05	
3	0.05	0.05	
4	0.10	0.15	
5	0.20	0.10	7
	4		(Contd.)

MVM—47101
(b) Implement Bellman Ford algorithm for the following graph. Find the distance matrix : 7

OR
(a) What is Travelling Salesman Problem ? Implement Travelling Salesman Problem for the following matrix representing complete graph :

$$
\left[\begin{array}{rrrr}
0 & 8 & 16 & 15 \\
14 & 0 & 9 & 12 \\
7 & 10 & 0 & 6 \\
11 & 13 & 10 & 0
\end{array}\right]
$$

(b) Write algorithm for LCS. Find the LCS of following sequence :

$$
\begin{aligned}
& X=a, a, b, a, a, b, a, b, a, a \\
& Y=b, a, b, a, a, b, a, b .
\end{aligned}
$$

MVM—47101
9. (a) Explain the significance of graph colouring algorithm. For the graph drawn complete solution space tree if maximum number of colours permitted are 3. Also write the algorithm for graph colouring.

6

(b) Explain 8-queen problem. Explain the explicit and implicit constraints associated with this problem. Give at least two solutions for this problem. Write algorithm. 7

OR

10. (a) Design a solution for Hamiltonian path. Explain how the solution can be used to solve Hamiltonian cycle problem.
(b) Explain Articulation point in DFS and give the complete algorithm for finding articulation point of an undirected graph. 7
11. (a) Write short notes on :-
(i) Deterministic and non-deterministic algorithm.
(ii) Polynomial Reduction.
