11. (a) Explain data structure and applications of quad trees.
(b) What is simplex range searching? What is the role of simplex range searching in geometry ? 7

OR

12. (a) What is partition tree ? How is it used in range searching ?

7
(b) What is visibility ? Discuss algorithm for weak and strong visibility.

NTK/KW/15/7579

Faculty of Engineering \& Technology

Seventh Semester B.E. (C.S.E.) (C.B.S.) Examination

Elective-II : COMPUTATIONAL GEOMETRY

Time-Three Hours] [Maximum Marks-80

INSTRUCTIONS TO CANDIDATES

(1) All questions carry marks as indicated.
(2) Solve Question No. 1 OR Question No. 2.
(3) Solve Question No. 3 OR Question No. 4.
(4) Solve Question No. 5 OR Question No. 6.
(5) Solve Question No. 7 OR Question No. 8.
(6) Solve Question No. 9 OR Question No. 10.
(7) Solve Question No. 11 OR Question No. 12.
(8) Assume suitable data wherever necessary.

1. (a) Discuss two fields of application of computational geometry highlighting why classical geometry can't be applied in such field.
(b) What is triangulation ? Describe the following :
(i) Angular triangulation
(ii) Point-set triangulation.

OR

2. (a) Explain with suitable example the impact of model of computation on complexity of geometric operation. 7
(b) Differentiate between :
(i) Classical and computational geometry
(ii) Plane and 3-D line
(iii) Convex and concave in context of computational geometry.
3. (a) Explain higher dimensional range searching with example.
(b) Discuss linear programming with prune and search in detail.

OR

4. (a) Discuss the half plane intersection in view of computational geometry.
(b) What is orthogonal range searching how is it different than linear searching ?
5. (a) Describe voronai diagram. What do you understand by duality of voronoi diagram ?
(b) Explain application of randomized incremental algorithm.

OR
6. (a) What do you understand by divide and conquer ?
(b) Define and explain voronoi diagrams. What are its basic properties ?
7. (a) Define delaunay triangulations. Explain the computations of delaunay triangulation.
(b) Explain the data structure for priority search trees used in geometric functions.

OR

8. (a) Explain data structure and application of internal trees ${ }^{*}$ and segment trees.
(b) Write a short note on triangulation of planar point sets.
9. (a) Define convex hull ? Determine convex hull, if any for the following figures. Justify your answer :

7
(b) Discuss any two applications of convex hull.

OR

10. (a) Define binary space partition trees. Explain with suitable example.

7
(b) Explain painter's algorithm in computational geometry.

MVM—47664
3
Contd.

