NTK/KW/15-7296

Third Semester B. E. (Civil Engineering)

(CBS) Examination

STRENGTH OF MATERIAL

Time : Three Hours]
[Max. Marks : 80
N. B. : (1) All questions are compulsory and carry marks as indicated.
(2) Due credit will be given to neatness and adequate dimensions.
(3) Assume suitable data wherever necessary.
(4) Use of Non-programmable pocket calculator is permitted.

1. (a) Derive the equation for elongation of bar of uniformaly tapering section.
(b) A bar show in fig. 1 is subjected to tensile force of 200 KN at each end.

Find :
(i) The diameter of middle portion if the stress in the middle portion is limited to $150 \mathrm{~N} / \mathrm{mm}^{2}$
(ii) The length of the individual portion if the total elongation of the bar is limited to 0.30 mm

Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$

OR

2. (a) A thin cylindrical pressure vessel of diameter 2.5 m and thickness 18 mm is subjected to an internal pressure of $1.2 \mathrm{~N} / \mathrm{mm}^{2}$. Find principal stresses.
(b) The composite bar consisting of steel and aluminium components shown in fig. 2

is connected to two grips at the ends at a temperature of $60^{\circ} \mathrm{C}$. Find the stresses in the two rods when the temperature falls to $20^{\circ} \mathrm{C}$.
(1) If the ends do not yield.
(2) If the ends yield by 0.25 mm

Take $\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}: \mathrm{E}_{\mathrm{a}}=0.70 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
\alpha_{\mathrm{s}} & =1.17 \times 10^{-5} \operatorname{per}^{0} / \mathrm{C}: \alpha_{\mathrm{a}}=2.34 \times 10^{-5} \mathrm{per}^{0} / \mathrm{C} \\
\mathrm{~A}_{\mathrm{s}} & =250 \mathrm{~mm}^{2} \quad: \mathrm{A}_{0}=375 \mathrm{~mm}^{2} 5
\end{aligned}
$$

3. (a) Draw SFD and BMD for simply supported beam subjected to uniformly distributed Load of intensity w in kn / m through out the span.
(b) Construct the axial thrust and SF diagram for the Loaded beam.

OR

4. Construct the SF and BM diagram for the Loaded haom

5. A bar of T section symmetrical about the vertical centre line has a 160 mm wide and 20 mm thick flange and a 120 mm deep and 20 mm thick web. The member is acted upon by a longitudinal pull P which acts on the section at a point on the vertical central line and is 50 mm from the bottom edge of the web. Determine the magnitude of the max ${ }^{\mathbf{m}}$ pull which can be applied if the maximum allowable tensile stress on the section is 80 MPa . Also find the minium stress on the section when the pull P is transmitted. 13 OR
6. Derive bending stress formulae for a beam subjected to transverse loading with suitable assumption.
7. Derive torsional formulae with suitable assumption for circular cross section.

OR

8. A solid shaft transmits 100 kW at 150 rpm . Determine the suitable diameter of the shaft if the maximum torque transmitted exceeds. the mean by 20% in each revolution. The shear stress is not to exceed 60 MPa . Also find the maximum angle of twist in a length of 4 m of the shaft. G=80 GPa.
NTK/KW/15-7296
9. A simply supported beam of 8 m length carries two point Loads of 64 kN and 48 kN at 1 m and 4 m respectively from the left hand end.
Find the deflection under each Load and the maximum deflection $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{I}=180 \times 10^{-6} \mathrm{~mm}^{4}$. 13

OR

10. An overhanging beam ABC. Supported at A and B is Loaded as shown in fig.

Determine the deflection at the free end and maximum deflection between A and B. Take $\mathrm{I}=600 \mathrm{~cm}^{4}$ and $\mathrm{E}=210 \mathrm{GPa}$.
11. The principal stresses at a point in a bar are $200 \mathrm{~N} / \mathrm{mm}^{2}$ (Tensile) and $100 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of the major principal stress. Also determine. The maximum intensity of shear stress in the material at the point. 14

OR

12. At a point in a piece of elastic material the normal stresses on two mutually perpendicular planes are $80 \mathrm{~N} / \mathrm{mm}^{2}$ (Tensile) and $60 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive). These planes also carry shear stress of $65 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the principal plane, principal stress and maximum shear stress. 14
