NTK/KW/15/7411

Faculty of Engineering & Technology

Fifth Semester B.E. (Electronics Engg.) (C.B.S.) Examination

SWITCHING THEORY AND AUTOMATA

Time : Three Hours] [Maximum Marks : 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Due credit will be given to neatness and adequate dimensions.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- 1. (a) Simplify the function using Kmap :

 $f(v, w, x, y, z) = \Sigma m(1, 2, 6, 7, 9, 13, 14, 15, 17, 22, 23, 25, 29, 30, 31)$

7

(Contd.)

(b) Given the following three partitions on the set {a, b, c, d, e, f, g, h, i, j, k} $\pi_1 = \{\overline{a, b, c}; \overline{d, e}; \overline{f}; \overline{g, h, i}; \overline{j, k}\}$

1

MVM—47081

www.solveout.in

$$\pi_{2} = \{\overline{a, b}; \overline{c, g, h}; \overline{d, e, f}; \overline{i, j, k} \}$$

$$\pi_{3} = \{\overline{a, b, c, f}; \overline{d, e}; \overline{g, h, i, j, k} \}$$
(i) Find $\pi_{1} + \pi_{2}$ and $\pi_{1} \cdot \pi_{2}$
(ii) Find $\pi_{1} + \pi_{3}$ and $\pi_{1} \cdot \pi_{3}$ 6
OR

- 2. (a) Minimize the function using tabulation method : $f(w, x, y, z) = \Sigma m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15).$ 7
 - (b) In an examination there are three problems A, B and C. In the following tabulation are the percentage of the students who received credit for solving one or more problems :

A:40	A, B : 12	A, B, C
B : 30	A, C : 8	
C: 30	B, C : 6	

What percent of the students received no credit at all for solving any of the three problems ? Use a Venn diagram. 6

3. (a) Decompose the function :

 $f(w, x, y, z) = \Sigma m(1, 3, 6, 10, 13, 15) about$ variables y and z by matrix method. 7

MVM—47081 2 (Contd.)

(b) Determine whether the function is symmetric or not :

 $f(w, x, y, z) = \Sigma m(0, 3, 5, 10, 12, 15).$ 7

OR

4. (a) Decompose the function by employing the Expansion theorem and expanding function about the variables x and y :

 $f(w, x, y, z) = \Sigma m(0, 2, 3, 7, 9, 10, 11, 14).$

(b) Design a minimal three output contact network to realize the functions shown below. Ten transfer contacts should be sufficient :

$$T_{1}(w, x, y, z) = \Sigma m(0, 1, 2, 4, 8)$$

$$T_{2}(w, x, y, z) = \Sigma m(3, 5, 6, 9, 10, 12)$$

$$T_{3}(w, x, y, z) = \Sigma m(7, 11, 13, 14, 15)$$

7

5. (a) Determine whether the function

 $f(x_1, x_2, x_3, x_4) = \Sigma m(0, 1, 3, 4, 5, 6, 7, 12, 13)$ is a threshold function and if it is, find a weight threshold vector. 7

- (b) Explain capabilities and limitations of threshold logic. 4
- (c) What is unate function ? 2

OR

6. (a) Given the switching function :

 $f(x_1, x_2, x_3, x_4) = \Sigma m(2, 3, 6, 7, 10, 12, 14, 15).$ find a minimal threshold logic realization. 10 MVM-47081 3 (Contd.)

www.solveout.in

: 4

- (b) Explain Elementary property of threshold element. 3
- Design Moore circuit for sequence 1001 in which overlapping is allowed. Implement the function using JK flip flop. 14

OR

- 8. Design an asynchronous sequential circuit with two inputs x_1 and x_2 and one output z. The initial input state is $x_1 = x_2 = 0$. The circuit output is to be 1 if and only if the input state is $x_1 = x_2 = 1$ and the preceding input state is $x_1 = 0$, $x_2 = 1$. 14
- 9. (a) For the machine given in the table below, find the equivalent partitions and a corresponding reduced machine in standard form :

	PS	NS		Z	
		$\mathbf{x} = 0$	x = 1		
	А	Н	В	0	
	В	F	А	0	
	С	G	D	0	
	D	Е	С	1	
	Е	А	С	0	
	F	С	D	0	
	G	В	А	0	
	Н	D	В	0	7
MVM—47	081	4		(Co	ontd.)

(b) Draw the homing tree and find the shortest homing sequence and the response of machine to homing sequence :

PS	NS, Z		
	$\mathbf{x} = 0$	x = 1	
А	B, 0	D, 0	
В	A, 0	B, 0	
C	D, 1	A, 0	
D	D, 1	C, 0	
	OR		

10. (a) For the machine given below design an autonomous clock :

6

(Contd.)

PS	NS			Z
	$\mathbf{x} = 0$	x = 1	$\mathbf{x} = 0$	x = 1
А	D	С	0	1
В	С	D	0	0
C	Е	F	0	1
D	F	F	0	0
E	В	А	0	1
F	А	В	0	0
		•		-

5

www.solveout.in

MVM-47081

(b) Construct an Adaptive distinguishing experiment for the machine given below :

PS	NS, Z		
	$\mathbf{x} = 0$	x = 1	
А	C, 0	A, 1	
В	D, 0	C, 1	
С	B, 1	D, 1	
D	C, 1	A, 0	

11. (a) For the following combinational circuit, detect s-a-0 and s-a-1 at x, by Boolean difference :

- (b) Explain in brief advantages and limitations of path sensitizing method for fault detection. 6
- OR MVM-47081 6 (Contd.) MVM-47081 7 3250 WWW.Solveout.in

6

12. (a) Find 'a' test and 'b' test for the combinational logic circuit which realizes the function :

 $f(w, x, y, z) = \overline{w} \overline{y} + \overline{y} z + w x z + x y \overline{z}.$ 7

(b) What are Hazards ? Explain different types of Hazards that occur in digital circuit.