Faculty of Engineering \& Technology Fifth Semester B.E. (Mechanical Engg./Power Engg.)
 (C.B.S.) Examination
 HEAT TRANSFER
 Time : Three Hours] [Maximum Marks : 80

INSTRUCTIONS TO CANDIDATES
(1) All questions carry marks as indicated.
(2) Solve SIX questions as follows :

Question No. 1 OR Question No. 2
Question No. 3 OR Question No. 4
Question No. 5 OR Question No. 6
Question No. 7 OR Question No. 8
Question No. 9 OR Question No. 10
Question No. 11 OR Question No. 12.
(3) Illustrate the answers with necessary figures/ drawings wherever necessary.
(4) Use of non-programmable calculator is permitted.
(5) Use of Steam tables/Thermodynamic tables for moist air/Psychrometric charts/Heat transfer databook/Mollier's/ Refrigeration charts is permitted.
(6) Assume suitable data wherever necessary.

1. (a) Derive an expression for general heat conduction equation in cylindrical co-ordinates.
(b) Obtain an expression for the thermal resistance and overall heat transfer coefficient of the composite sphere storing hot fluid and exposed to cold environment.

OR

2. (a) A composite wall has three layers of materials held together by a 3 cm diameter aluminium rivet per $0.1 \mathrm{~m}^{2}$ of surface. The layers of materials consists of 10 cm thick brick with hot surface at $200^{\circ} \mathrm{C}, 1 \mathrm{~cm}$ thick timber with cold surface at $10^{\circ} \mathrm{C}$. These two layers are interposed by a third layer of insulating material 25 cm thick. The conductivities of the materials are :
$\mathrm{K}($ Brick $)=0.93 \mathrm{~W} / \mathrm{mK}, \mathrm{K}($ Insulation $)=0.12 \mathrm{~W} / \mathrm{mK}$
$\mathrm{K}($ Wood $)=0.175 \mathrm{~W} / \mathrm{mK}, \mathrm{K}($ Aluminium $)=204 \mathrm{~W} / \mathrm{mK}$
Assume one dimensional heat flow, calculate the percentage increase in heat transfer rate due to rivets.

9
(b) Discuss the concept of critical thickness of insulation and derive the expression for critical radius of insulation for a cylinder. 5
3. (a) A 66 kV transmission line carrying a current of 900 ampere is 18 mm in diameter. The electric resistance of the copper conductor is $0.076 \mathrm{ohm} /$ km and the thermal conductivity of copper is $380 \mathrm{~W} / \mathrm{mK}$. The surrounding temperature is $35^{\circ} \mathrm{C}$. The combined convection and radiation coefficient for heat transfer from the wire surface to the surrounding is $14 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate :
(1) The surface temperature of the transmission line.
(2) The heat generated per unit volume.
(3) The maximum temperature in the line.

6
(b) During heat treatment, cylindrical pieces of 25 mm diameter, 30 mm height and at $30^{\circ} \mathrm{C}$ are placed in a furnace at $750^{\circ} \mathrm{C}$, with convection coefficient of $80 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate the time required to heat the pieces to $600^{\circ} \mathrm{C}$. What will be the shortfall in temperature if the pieces are kept only for 285 seconds in the furnace?

The properties are : density $\rho=7850 \mathrm{~kg} / \mathrm{m}^{3}$
Specific heat $\mathrm{C}_{\mathrm{p}}=480 \mathrm{~J} / \mathrm{kgK}$
Conductivity $\mathrm{k}=40 \mathrm{~W} / \mathrm{mK}$
OR
MVM—47095

3
(Contd.)
4. (a) Which of the following arrangement of pin fins will give higher heat transfer rate from a hot surface ?

6 fins of 10 cm length
12 fins of 6 cm length
The base temperature of the fin is maintained at $200^{\circ} \mathrm{C}$ and the fin is exposed to a convection environment at $15^{\circ} \mathrm{C}$ with convection coefficient $25 \mathrm{~W} / \mathrm{m}^{2{ }^{2}} \mathrm{C}$. Each fin has cross-sectional area of $2.5 \mathrm{~cm}^{2}$, perimeter 5 cm and is made of a material having thermal conductivity $250 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$.

Neglect the heat loss from the tip of the fin. 6
(b) The temperature of dry saturated steam flowing in a 10 cm diameter steel pipe has been measured in the laboratory by means of thermometric well. The well is of 1.25 cm diameter and 3 mm wall thickness. A reliable pressure gauge fitted to the pipeline reads steam pressure as 10.5 bar. From steam table. Saturation temperature of steam at 10.5 bar is found to be $181.1^{\circ} \mathrm{C}$. What should be
the depth (length) of the well if the limit on maximum error in temperature measurement is 2.5%. The temperature at the pipe wall is $120^{\circ} \mathrm{C}$. The heat transfer co-efficient between steam and steam well is $420 \mathrm{~kW} / \mathrm{m}^{2} \mathrm{~K}$ and thermal conductivity of the wall material is $160 \mathrm{~kW} / \mathrm{mK}$. Also draw schematic diagram.
5. (a) Show by dimensional analysis that data for forced convection may be correlated by an equation of the form :

$$
\mathrm{Nu}=\mathrm{f}(\mathrm{Re}, \operatorname{Pr})
$$

Where, Nussult number $\mathrm{Nu}=\frac{\mathrm{hL}}{\mathrm{K}}$

$$
\begin{aligned}
& \text { Reynolds number } \operatorname{Re}=\frac{? \mathrm{VL}}{\mu} \text { and } \\
& \text { Prandtl number } \operatorname{Pr}=\frac{\mu \cdot \mathrm{Cp}}{\mathrm{~K}}
\end{aligned}
$$

All above symbols have their usual meanings.
(b) In a gas turbine system, hot gases at $1000^{\circ} \mathrm{C}$ flow at $75 \mathrm{~m} / \mathrm{s}$ past the surface of a combustion chamber which is at a uniform temperature of $300^{\circ} \mathrm{C}$. What would be the heat loss from the gases to the combustion chamber which can be idealized as a flat plate measuring $100 \mathrm{~cm} \times 50 \mathrm{~cm}$? The flow is parallel to the 100 cm side and the transition from the laminar to turbulent conditions is anticipated to be abruptly at a critical Reynolds number of

$$
\mathrm{R}_{\mathrm{e}_{\mathrm{cr}}}=5 \times 10^{5}
$$

Take the following properties of gas :
$\rho=0.496 \mathrm{~kg} / \mathrm{m}^{3}, v=93.5 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{K}=0.0744 \mathrm{~W} / \mathrm{mK}$, and $\mathrm{Pr}=0.625$.

OR

6. (a) Write short notes on the following :
(i) Velocity boundary layer and thermal boundary layer formation.
(ii) Significance of Reynolds number and Nussult number.
(b) Water entering at $10^{\circ} \mathrm{C}$ is heated to $40^{\circ} \mathrm{C}$ in a tube of 0.02 m internal diameter at a mass flow rate of $0.01 \mathrm{~kg} / \mathrm{s}$. The outside of the tube is covered with an insulated electric heating element that produces a uniform heat flux of $15000 \mathrm{~W} / \mathrm{m}^{2}$ over the surface. Determine :
(i) Reynolds number
(ii) Heat transfer coefficient
(iii) Length of pipe needed for a $30^{\circ} \mathrm{C}$ increase in average temperature.

7
7. (a) Air flows through a long rectangular ($30 \mathrm{~cm} \times$ 65 cm width) air conditioning duct and maintains the outer duct surface temperature at $15^{\circ} \mathrm{C}$. If the duct is uninsulated and exposed to air at $25^{\circ} \mathrm{C}$, calculate the heat gained by the duct per meter length assuming it to be horizontal.

Use the following properties of air :
$\mathrm{C}_{\mathrm{p}}=1005 \mathrm{~J} / \mathrm{kgK}, \quad v=15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$\rho=1.205 \mathrm{~kg} / \mathrm{m}^{3}, \quad \mathrm{~K}=0.02593 \mathrm{~W} / \mathrm{mK}$.
(b) Explain different regimes of pool boiling curve.

OR

8. (a) Distinguish between filmwise and dropwise condensation. Also, discuss the effect of noncondensable gases on condensation rate. 6
(b) Saturated Freon-12 vapour condense on outside of a bank of 25 horizontal tubes having outer diameter of 1 cm arranged in 5×5 square array. Calculate the rate of condensation per meter length of the array, if its surface temperature is maintained at $40^{\circ} \mathrm{C}$.

Use properties of Freon-12 as :
$\rho=1218 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~K}_{\mathrm{f}}=0.0686 \mathrm{~W} / \mathrm{mK}$
$\mu=0.0248 \mathrm{~kg} / \mathrm{ms}, \mathrm{h}_{\mathrm{g}}=1218.12 \times 10^{3} \mathrm{~J} / \mathrm{kg}$.
9. (a) Calculate the following for an industrial furnace in the form of a black body and emitting radiation at $2500^{\circ} \mathrm{C}$:
(i) Monochromatic emissive power at $1.2 \mu \mathrm{~m}$ length
(ii) Wavelength at which the emission is maximum
(iii) Maximum emissive power.
(iv) Total emissive power and
(v) Total emissive power of the furnace if it is assumed as a real surface with emissivity equal to 0.9 .
(b) Explain following terms related with radiation :
(i) Emissivity
(ii) Intensity of radiation
(iii) Black body and gray body
(iv) Lambert's cosine law.

OR

10. (a) State and explain properties of shape factor. 4
(b) Calculate the shape factor for the configuration shown in the figure given below :
(i) Long tube with cross-section of an equilateral triangle.
(ii) Black body inside a black surface.
(iii) Diagonal partitions within a long square duct.

(i)

(ii)

(iii)
11. (a) For counter flow heat exchanger show that:

$$
\epsilon=\frac{1-\exp [-\mathrm{NTU}(1-\mathrm{C})]}{1-\mathrm{C} \cdot \exp [-\mathrm{NTU}(1-\mathrm{C})]}
$$

where $\in=$ Effectiveness of Heat Exchanger

$$
\begin{equation*}
\mathrm{C}=\frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}, \mathrm{N}=\mathrm{NTU} \tag{7}
\end{equation*}
$$

(b) In a chemical plant $1000 \mathrm{~kg} / \mathrm{min}$ of the product at $700^{\circ} \mathrm{C}(\mathrm{Cp}=3.6 \mathrm{~kJ} / \mathrm{kgK})$ are to be used to heat $1200 \mathrm{~kg} / \mathrm{min}$ of the incoming fluid from $100^{\circ} \mathrm{C}$ $(\mathrm{Cp}=4.2 \mathrm{~kJ} / \mathrm{kgK})$. If the installed heat transfer surface area is $42 \mathrm{~m}^{2}$ and the overall heat transfer coefficient is $1 \mathrm{~kW} / \mathrm{m}^{2} \mathrm{~K}$. Compare the fluid outlet temperatures with counter flow and parallel flow arrangements.

OR

12. In an oil cooler, oil enters at $160^{\circ} \mathrm{C}$. If water entering at $35^{\circ} \mathrm{C}$ flows parallel to oil, the exit temperatures of oil and water are $90^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ respectively. Determine the exit temperature of oil and water if the two fluids flow in opposite directions. Assume that the flow rates of the two fluids and U_{0} remain unaltered. What would be minimum temperatures to which oil could be cooled in parallel flow and counter flow operations ?
