B.E. (Information Technology) Seventh Semester (C.B.S.) **Elective - I : Compiler Design**

P. Pages: 3 Time: Three Hours			S * 1 0 7 6 *	TKN/KS/16/7590 Max. Marks: 80	
	Notes	5: 1. 2. 3. 4. 5. 6. 7. 8. 9.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Due credit will be given to neatness. Illustrate your answers whenever necessary with the help of neatness.	at sketches.	
1.	a)		with neat diagram various stages or phases of compiler. Also, exthesis tasks performed by compiler.	xplain analysis 8	
	b)	-	the following with appropriate example :- otstrapping ii) Cross compiler. OR	6	
2.	a)	by the fe	the term token. Find the tokens and count the number of tokens following program fragment:- % d % d % f ", & marks, & total, & percentage);	used or generated 6	
	b)	-	the following compiler writing tools:- EX tool ii) YACC tool.	8	
3.	a)	Constru $A \rightarrow N$ $N \rightarrow \in$ $G \rightarrow \in$	b G	LL(1) or not. 7	
	b)	$G_1 = \{I$	FIRST and FOLLOW sets for the grammar G_1 , where $P \rightarrow QNQ Q \rightarrow tQ \mid \in N \rightarrow bN \mid \in \}$ Construct parsing table for the grammar is CLR (1) or not.	r CLR (1) and test	
4.	a)		eat diagram, explain the working of LR parsers. And differentiate CLR(1) parsers.	e between, LR(0), 6	
	b)	gramma $R \rightarrow d$ $D \rightarrow D$	by you mean by viable prefix? Find the viable prefixes for the string given below :- $ \wedge (D)$ A R the parsing actions generated by shift-reduce parser for the string		
5.	a)		o you mean by semantic action or semantic rules used for SDT? example. Write SDT for evaluation of Boolean expression.	Explain with 6	

b) For the given program fragment, obtain TAC and draw the control flow graph for the same. begin

```
add : = 0; i: = 1;
    do
        begin
          add : = add + R[j] *T[j];
              j := j+1;
        end
     while i < 20
end
```

OR

State the difference between syntax tree and annotated parse tree. Generate Annotated 6. a) parse tree and syntax tree for the given expression:-

6

s+(r*(r-d))+((r-d)*d)

b) Write the translation scheme for the given array reference and write TAC for the given multidimensional array, arrays are statically allocated and size of B is 10*10*20, size of C is 20, size of D is 20*10 and BPW is 8.

B[i,j,k] := C[i] + D[i,j]

7. Write four properties for good error diagnosis. a)

4

b) Explain data structures used for symbol table organization. 5

7

7

c) Explain heap-allocation storage strategy. 4

OR

Explain various error recovery techniques used by compiler. 8. a)

7

b) Explain the syntactic errors and semantic errors with one example of each. 6

8

9. For the given graph, compute IN and OUT set and U-d chaining information. a)

> d1 : x := d - B_1 d2:y:=bd3 : x := x + cd6: y:=k B_4 B_2 d4:z:=cd5: x = f

Write the steps or algorithm for partitioning a sequence of three-address statements into b) basic blocks.

5

OR

10. What do you mean by reducible flow graph? Is it necessary to detect loops in a reducible a) flow graph? Justify your answer.

Explain, with suitable example, loop invariant statements or computation, elimination b) from the code. Explain its importance in loop optimization.

8

5

- 11. a) Write about the following peephole optimizations:
 - i) Redundant loads and stores
- ii) Unreachable code.
- iii) Use of machine idioms
- iv) Reduction in strength.

Write one example of each.

b) Explain the working or implementation of labeling algorithm for the statement given below :-

5

8

$$S := n - t * (r/f)$$

OR

12. a) Explain the evaluation of number of registers to be allocated for the expression given below. And generate the code using code generation procedure.

8

$$S := -(z+y) + x + (x *(z+y)) + ((z-y) * t)$$

b) Explain the DAG. What are advantages of using DAG as compared to syntax tree.

5
