B.E. (Computer Technology) Seventh Semester (C.B.S.) Flective - I · Digital Signal Processing

Elective - 1 : Digital Signal Processing						
P. Pages: 2 Time: Three Hours			Ours		TKN/KS/16/7569 Max. Marks: 80	
				* 1 0 5 8 *		
	Note	otes: 1.		All questions carry marks as indicated.		
			2.	Solve Question 1 OR Questions No. 2.		
			3.	Solve Question 3 OR Questions No. 4.		
			4.	Solve Question 5 OR Questions No. 6.		
			5.	Solve Question 7 OR Questions No. 8.		
			6.	Solve Question 9 OR Questions No. 10.		
			7.	Solve Question 11 OR Questions No. 12.		
			8.	Due credit will be given to neatness and adequate dimensions.		
			9. 10.	Assume suitable data whenever necessary. Illustrate your answers whenever necessary with the help of neat sketches.		
			10.	mustrate your answers whenever necessary with the help of near sketches.		
1.	a)	Exp	olain	advantages and imitations of DSP over ASP.	5	
	b)	Cor	nside	er the analog signal $x(t) = 3\cos 2000\pi t + 5\sin 6000\pi t + 10\cos 12,000\pi t$	9	
		i)	\mathbf{W}	hat is the nyquist rate for this signal?		
		ii)	As	ssume that we sample this signal using a sampling rate $F_s = 5000$ samples/sec	г.	
				hat is the discrete-time signal obtained after sampling.		
		iii)	\mathbf{W}	hat is the analog signal y(t) that we can reconstruct from the samples if we u	se	
			1 d €	eal interpolation. OR		
2.	a)	Wh	at ar	re different types of DT systems. Explain each with example.	(
	ŕ					
	b)			pulse response of linear time-invariant system is $h(n) = \{1, 2, 1, -1\}$.	8	
		Det	erm	ine the response of system to the input signal $x(n) = \{1, 2, 3, 1\}$ by using gra	aphical	
		or a	ınaly	vtical convolution method.		
3.	a)	Sta	te an	nd prove any two properties of z-transform.	6	
	b)			ca > D	5	
	0)	Det	erm	ine the z-transform of the signal $x(n) = \left(\frac{1}{2}\right)^n \mu(n)$ Also sketch the region of	ì	
				gence (ROC).		
				OR		
4.	a)	Fin	d the	e inverse z-transform of following using power series expansion method who	$\operatorname{en} x(n)$	
		is c	ausa	al and when x(n) is anticausal $x(z) = \frac{1 + z^{-1}}{1 - 2z^{-1} + z^{-2}}$		
	b)			e impulse response of the system described by diff. equation $3y(n-1)-4y(n-2) = x(n)+2x(n-1)$ using z-transform.	7	
5.			_	point DFT of the following sequence using DIT-FFT algorithm. $(-1)^n \cdot 0 \le n \le 7$.	14	
				ompute the number of complex additions and multiplications required.		

14

5

- Compute the circular convolution of the following sequences using DFT and IDFT 6. $h(n) = \{1, 2, 3, 4\}, x(n) = \{1, 2, 2, 1\}$
- 7. Design a digital Buttorworth filter that satisfies the following constraints using Bilinear 13 transformation

Assume T = 1 sec.

$$0.9 \le |H(w)| \le 1,$$
 $0 \le w \le \frac{\pi}{2}$
 $|H(w)| \le 0.2,$ $\frac{3\pi}{4} \le w \le \pi$

- A filter (LTI) is described by the following difference equation 8. 13 $y(n) = \frac{1}{4} y(n-1) - \frac{5}{24} y(n-2) - \frac{1}{12} y(n-3) + x(n) + \frac{1}{3} x (n-1) \text{ implement the system}$ using DF-1, DF-II, cascade and parallel form of structures.
- 9. A low pass FIR filter is to be designed with following desired frequency response: 13 $Hd(w) = \begin{cases} e^{-j2w} & ; & \frac{-\pi}{4} \le w \le \frac{\pi}{4} \\ 0 & ; & \frac{\pi}{4} \le w \le \pi \end{cases}$

Determine the filter coefficients h(n) using rectangular window. Also determine the frequency response H(w).

OR

10. Design FIR filter using Hamming window for a derived response:

13 $Hd(w) = \begin{cases} e^{-j3w} &, & \frac{-3\pi}{4} \le w \le \frac{3\pi}{4} \\ 0 &, & \frac{3\pi}{4} \le w \le \pi \end{cases}$

Also draw the structure of the filter.

- What is Multirate signal processing? Explain the applications of multirate signal 11. a) 6 processing.
 - 7 b) Obtain the O/P signal $y_1(n)$ from the input signal x(n) as shown below $x(n) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

x(n) $\downarrow 3$ $\uparrow 2$ $\downarrow y_1(n)$

- Explain the sampling rate conversion by rational factor with the help of block diagram. **12.** a)
 - Explain the sub band coding of speech signals with the help of block diagram. 8 b)
