Faculty of Engineering & Technology Second Semester B.E. Examination ADVANCED PHYSICS

Time—Two Hours]

[Maximum Marks-40

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Solve FOUR questions as follows:
 - Q. 1 OR Q. 2, Q. 3 OR Q. 4, Q. 5 OR Q. 6,
 - Q. 7 OR Q. 8
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- (5) Use of Non-programmable electronic calculator is permitted.

List of Constants:

- 1. Velocity of light 'c' = 3×10^8 m/s
- 2. Charge of an electron = 1.602×10^{-19} c
- 3. Mass of electron m = 9.11×10^{-31} kg
- 4. Mass of proton $m_p = 1.67 \times 10^{-27} \text{ kg}$

1. (a) Explain the terms:
(i) Coherence
(ii) Metastable state
(iii) Stimulated emission.
(b) Explain construction, working and limitation
of Ruby Laser with neat energy level diagram
(c) Find the thickness of the water film with refractive
index of 1.33 formed on a glass window pane t
act as a non-reflecting film. Given $\lambda = 5500 \text{ Å}$
OR
2. (a) What is thin film? Obtain an expression for
fringe width in wedge shaped thin film. 1+3
(b) In Newton's ring experiment why:
(i) Plano convex lens has large radius o
curvature. (ii) The rings get closer away from the centre
(c) White light has frequency range from 0.4×10^{15} Hz
to 0.7×10^{15} Hz. Find the coherence time and
coherence length.
3. (a) Prove that the path travelled by an electron in a
uniform transverse electric field is a parabola.
3

(b)	Show that the radius of charged pa	rticle movin	g
	at right angle to the magnetic field is		
	to its momentum.		4

An electron beam passes through magnetic field of 2×10^{-3} Wb/m² and electric field of 3.4×10^4 V/m both acting simultaneously at the same point. The path of the electron remains unchanged. Calculate the electron speed.

OR

- 4. (a) Obtain an expression of radius and pitch of the helical path described by an electron when it enters uniform magnetic field making an acute angle with the field direction.
 - (b) Explain the function of velocity filter. 3
 - (c) An electron is projected with an initial velocity of 10⁷ m/s and at an angle of 30° to the horizontal into a uniform electric field of 5000 V/m. Find the maximum height to which electron rises vertically and the time taken by the particle to reach maximum height.
- (a) What is Bethe's law? Discuss similarities and differences between Bethe's law and Snells' law.
- (b) Draw block diagram of CRO and explain how intensity of trace is controlled on screen.

MNO-39515

			ř
1	(c)	A cyclotron with its dees of radius 2 m has	
		magnetic field of 0.75 Wb/m ² . Calculate the	ne
		maximum energy to which a proton can l	be
		accelerated. 3.169×10-9	3
		OR	
6.	(a)	Describe the working principle of a Bainbridge	ge
		mass spectrograph with a neat sketch.	5
	(b)	Explain the function of aquadag coating on the	he
		screen of CRT.	2
	(c)	An electron beam enters from a region of potenti	al
		75 V into a region of potential 100 V; making a	
		angle of 45° with the direction of electric fiel	d.
		Find the angle through which the beam refract	ts.
			3
7	(a)	What is an optical fibre? Explain the princip	le
	-	involved in its working.	4
1	1 (6)	Discuss the working of optical fibre as	a
	V	temperature sensor.	3
\ \	(c)	Calculate numerical aperture for a fibre cable w	ith
,		a core index of refraction of 1.45 and claddi	
		index of 1.30.	3
3,5		OR	
8.	(a)	How does the properties of nanomaterials diff	fer
, e	1 1 1	from bulk materials?	4
- 4	(b)	What are Zeolites? Give their applications.	3
	(c)	State the applications of Nano-materials	in

Engineering.

3