B.E. Second Semester (Fire Engineering) (C.B.S.)

Engineering Mechanics Paper - IV

P. Pages: 4

TKN/KS/16/7293
Time : Two Hours

Max. Marks : 40

Notes : 1. All questions carry marks as indicated
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Assume suitable data wherever necessary.
7. Illustrate your answers wherever necessary with the help of neat sketches.
8. Use of non-programmable calculator is permitted.

1. a) In figure the x -component of F is 893 N , find its Y -component.

b) A force $\mathrm{F}, 70 \mathrm{~N}$ in magnitude passes through point $\mathrm{A}(-2,1,3)$ towards $\mathrm{B}(4,4,5)$ coordinates of point C and D are $(-2,0,1)$ and $(2,0,-2)$ respectively.
Find
i) Component of F along AC
ii) Moment of F about line BC
iii) Moment of F about line CD.

OR

2. a) A dam is subjected to 3 forces, 50 KN force on the upstream vertical face $\mathrm{AB}, 40 \mathrm{KN}$ force on the downstream inclined face and its own weight of 140 KN as shown in figure.
Determine the single equivalent force and locate its point of intersection with the base AD , assuming all the forces to lie in the same plane.

b) Three forces $\mathrm{F}, \mathrm{P}, \mathrm{Q}$ act at point D as shown in figure $\mathrm{F}=90 \mathrm{~N}$ and $\mathrm{P}=149 \mathrm{~N}$. Determine the magnitude of force Q ; so that the resultant of the three forces is parallel to ' Y^{\prime} axis.

3. a) A bar 12.0 m long is supported by two inclined plane as shown in figure. Determine ' x ' for the equilibrium of the bar. Assume smooth surfaces.

b) For the truss shown in fig. compute the member forces BG, AC and HG .

OR

4. a) What are the assumptions made in analysis of simple truss?
b) A block of 700 N is resting on a floor as shown in figure. Determine the value of P , which will cause the block to
i) Move
ii) Tip

Take $\mu=0.3$

c) State coulomb's laws of dry friction.
5. a) Determine the centroid of the I section shown in figure with respect to the axes shown.

Also find moment of Inertia about x -axis.

Y_{o} axis is axis of symmetry.
b) State and explain the principle of virtual work.

OR

6. a) Compute the product of inertia of the triangle shown in fig. with respect to given X \& Y axis.

b) Using virtual work method determine reactions at supports A, B and C for the beam shown in figure.

7. a) Explain D'Alembert's Principle.
b) Referring to the figure, Assume A weighs 200 N and B weighs 100 N , determine acceleration of bodies if the coefficient of kinetic friction is 0.10 between the cable and the fixed drum.

OR

8. A bullet of weight 30 gms moving with velocity of $100 \mathrm{~m} / \mathrm{sec}$ hits a 5 kg bob of a simple pendulum horizontally. Determine the maximum angle through which the pendulum string 0.5 m long may swing if.
a) The bullet get embedded in bob.
b) The bullet escapes from the other end at $20 \mathrm{~m} / \mathrm{sec}$.
c) The bullet is rebounded from the surface of bob ât $20 \mathrm{~m} / \mathrm{sec}$.

