B.E. Second Semester (Fire Engg.) (C.B.S.) Materials Chemistry Paper – III

P. Pages : 2 Time : Two Hours			S TKN/KS/16/ Max. Mark	TKN/KS/16/7292 Max. Marks : 40	
	Note	s: 1. 2. 3. 4. 5. 6. 7. 8. 9.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Due credit will be given to neatness and adequate dimensions. Diagrams and chemical equations should be given whenever necessary. Illustrate your answers wherever necessary with the help of neat sketches. Use of non-programmable calculator is permitted.		
1.	a)	During follow i) V ii) V iii) v iv) T v) T Detern	g the determination of calorific value of a gaseous fuel by Boy's calorimeter, the ving results were recorded: Volume of gaseous fuel burnt at NTP = 0.093 m^3 . Veight of water used for cooling the combustion products = 31.0kg . vt of steam condensed = 0.030 kg . Vemperature of inlet water = 26.2° c Vemperature of Outlet water = 36.3° c. nine G.C.V. and N.C.V. of gaseous fuel per cubic meter at NTP.	4	
	b)	Expla Bomb	in the determination of calorific value of solid and non volatile liquid fuel by using calorimeter.	6	
2.	a)	What	are rocket propellants? Give the characteristics of propellants.	3	
	b)	What	is significance of proximate analysis of coal?	3	
	c)	Write i) C ii) I iii) E	short notes on: any two. C.N.G. J.P.G. Biodiesel.	4	
3.	a)	A liqu i) V	id hydrocarbon fuel containing C=80% and H=20% is fired in a furnace. Calculate: Veight of air required per kg of fuel.	Λ	
		ii) T u	The volumetric composition of dry products of combustion, if 30% excess air is sed.	4	
	b)	Expla labelle	in Fischer Tropsch Process for manufacturing of synthetic gasoline with a well ed diagram. OR	4	
4.	a)	Expla What	in the process of fractional distillation of crude oil with a well labeled diagram. are the different fractions of petroleum and their uses?	6	

	b)	Explain knocking in petrol Engine. How is it related to chemical structure of fuel.	4
	c)	Differentiate between octane number and Cetane number.	2
5.	a)	Under what operating conditions solid lubricants are preferred? Explain Graphite as a solid lubricant with diagram.	5
	b)	 Give the significance of following properties of lubricating oils: i) Cloud and pour point ii) Aniline point iii) Acid value. 	3
		OR	
6.	a)	Explain thick film lubrication.	3
	b)	 Write criteria for selection of lubricants for. i) Transformer. ii) IC Engine. 	3
		111) Steam turbine.	
	c)	A lubricating oil has the same viscosity as standard napthanic and paraffinic type oils at 210°F. Their viscosities at 100°F are 325 S.U.S., 430 S.U.S. and 260 S.U.S. respectively. Find the viscosity Index of the oil.	2
7.	a)	What are nanomaterials? Enlist the applications of nanomaterials in the field of Electronics.	3
	b)	What are the properties and applications of liquid crystal polymers? Discuss different phases of LCP.	4
	c)	What are biodegradable polymers? Give synthesis and applications of polylactic acid.	3
		OR	
8.	a)	What are composite materials? Give industrial applications of fibre reinforced composite materials.	3
	b)	Give an account of synthesis, properties and applications of polypyrole as a conducting polymer.	4
	c)	Differentiate between single wall carbon nanotube and multi wall carbon nanotube.	3
