B.E. (Electrical Engineering (Electronics \& Power)) Fourth Semester (C.B.S.)

Elements of Electromagnetics Paper - II

P. Pages: 3

Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.

1. a) i) Give the Cartesian co-ordinates of point $\mathrm{C}\left(4.4,-115^{\circ}, 2\right)$.
ii) Give cylindrical co-ordinates of point $\mathrm{D}(-3.1,2.6,-3)$.
iii) Specify distance from C to D .
b) Given points $\mathrm{A}(2,5,-1), \mathrm{B}(3,-2,4) \& \mathrm{C}(-2,3,1)$ find
i) $\quad \bar{R}_{A B} \cdot \bar{R}_{A C}$
ii) Angle between $\overline{\mathrm{R}}_{\mathrm{AB}}$ and $\overline{\mathrm{R}}_{\mathrm{AC}}$.
iii) Length of projection of $\bar{R}_{A B}$ on $\bar{R}_{A C}$.
iv) Vector projection of $\overline{\mathrm{R}}_{\mathrm{AB}}$ on $\overline{\mathrm{R}}_{\mathrm{AC}}$.

OR

2. a) A pair of diametrically opposite corners of the volume is

$$
\begin{aligned}
& \mathrm{P}_{1}\left(\mathrm{r}=5, \theta=20^{\circ}, \phi=0.1 \pi\right) \\
& \mathrm{P}_{2}(\mathrm{r}=12, \theta=80, \phi=0.4 \pi)
\end{aligned}
$$

i) Find length of straight line connecting diametrically opposite corners of the volume.
ii) Find volume enclosed by the surfaces.
iii) Find area of the enclosing surfaces.
b) Give the Cartesian components of vector.

$$
\overline{\mathrm{H}}=20 \hat{\mathrm{a}}-10 \hat{\mathrm{a} \phi}+3 \hat{\mathrm{az}} \text { at } \mathrm{P}(5,2,-1) .
$$

3. a) Three point charges are located in free space as follows.

$$
\begin{aligned}
& \mathrm{Q}_{1}=-6 \mu \mathrm{c} \text { at } \mathrm{P}_{1}(1,0,0) \\
& \mathrm{Q}_{2}=10 \mu \mathrm{c} \text { at } \mathrm{P}_{2}(2,0,0) \\
& \mathrm{Q}_{3}=4 \mu \mathrm{c} \text { at } \mathrm{P}_{3}(4,0,0)
\end{aligned}
$$

Which charge has greatest magnitude of force on it? What is the magnitude of that force.
b) State Coulomb's law. Derive an expression for electric field intensity for line charge.

OR

4. a) A uniform line charge of density $100 \mathrm{nc} / \mathrm{m}$ lies between $\mathrm{z}=3 \& \mathrm{z}=7$ on z - axis. No other charge is present Find E at origin.
b) Find the total charge inside the volume for each of the following.
i) $\quad \rho_{v}=10 z^{2} e^{-0.1 x} \sin \pi y$

$$
-1 \leq x \leq 2,0 \leq y \leq 1,3 \leq z \leq 3.6
$$

ii) $\quad \rho_{\mathrm{v}}=4 \mathrm{xyz}^{2}, 0 \leq \rho \leq 2,0 \leq \phi \leq \pi / 2,0 \leq \mathrm{z} \leq 3$
iii) $\quad \rho_{\mathrm{v}}=\frac{1}{\mathrm{x}^{3} \mathrm{y}^{3} \mathrm{z}^{3}}, 0.1 \leq|\mathrm{x}| ;|\mathrm{y}|,|\mathrm{z}| \leq 0.2$
5. a) State divergence theorem. Give physical significance of divergence.
b) Find the potential \& volume charge density at $\mathrm{P}(0.5,1.5,1)$ in free space given the potential field.
i) $\quad V=2 x^{2}-y^{2}-z^{2} V$
ii) $\quad \mathrm{V}=2\left(2 \mathrm{r}^{2}-7\right) \cos \theta \cos \phi \mathrm{V}$
iii) $\mathrm{V}=6 \rho \phi \mathrm{zV}$

OR

6. a) Define electric potential. Show that $\overline{\mathrm{E}}=-\nabla \mathrm{V}$.
b) Given the flux density

$$
\overline{\mathrm{D}}=\frac{2 \cos \theta}{\mathrm{r}^{3}} \hat{\mathrm{a}}_{\mathrm{r}}+\frac{\sin \theta}{\mathrm{r}^{3}} \hat{a}_{\theta} \mathrm{c} / \mathrm{m}^{2}
$$

Evaluate both sides of divergence theorem for the region defined by

$$
1<\mathrm{r}<2,0<\theta<\pi / 2,0<\phi<\pi / 2
$$

7. a) Derive Laplace's equation. Express Laplace's equation in cylindrical and spherical coordinate.
b) Find relative permittivity of dielectric material used in parallel plate capacitor if
i) $\mathrm{C}=40 \mathrm{nF}, \mathrm{d}=0.1 \mathrm{~mm}, \mathrm{~S}=0.15 \mathrm{~m}^{2}$
ii) $\mathrm{d}=0.2 \mathrm{~mm}, \mathrm{E}=500 \mathrm{kv} / \mathrm{m} \& \rho_{\mathrm{S}}=10 \mu \mathrm{c} / \mathrm{m}^{2}$
iii) $\mathrm{D}=50 \mu \mathrm{c} / \mathrm{m}^{2} \&$ energy density is $20 \mathrm{~J} / \mathrm{m}^{3}$.

OR

8. a) Derive the boundary conditions for the boundary between two dielectric materials.
b) The region $\mathrm{z}<0$ contains a perfect dielectric for which $\in_{\mathrm{R}_{1}}=2.5$ while the region $\mathrm{z}>0$ is characterized by $\epsilon_{R_{2}}=4$. Let $\overline{\mathrm{E}}_{1}=-30 \hat{\mathrm{ax}}+50 \hat{\mathrm{ay}}+70 \hat{\mathrm{az}} \mathrm{V} / \mathrm{m}$.
Find $\overline{\mathrm{E}}_{\mathrm{N}_{1}}, \overline{\mathrm{E}}_{\mathrm{t}_{1}}, \overline{\mathrm{E}}_{1}, \overline{\mathrm{D}}_{\mathrm{N}_{2}}, \overline{\mathrm{D}}_{\mathrm{t}_{2}}, \overline{\mathrm{D}}_{2}, \mathrm{P}_{2} \&$ Angle θ_{2} between E_{2} \& a normal to the surface.
9. a) State \& Explain Ampere's circuital law.
b) Given $\left.\overline{\mathrm{H}}=\left[\frac{10 \mathrm{r}^{2}}{\sin \theta}\right] \hat{\mathrm{a}}_{\theta}+180 \mathrm{r} \cos \theta \hat{\mathrm{a}}_{\phi} \mathrm{A} \right\rvert\, \mathrm{m}$
in free space. Find the current in $\hat{\mathrm{a}}_{\theta}$ direction through the conical surface $\theta=30^{\circ} .0 \leq \phi \leq 2 \pi, 0 \leq r \leq 2$ by using any one side of Stoke's theorem.

OR

10. a) State \& Explain.
i) Biot - Savart's Law.
ii) Stoke's theorem.
b) Derive the expression for inductancee per unit length of co-axial cable.
11. Explain the following terms
i) Depth of Penetration.
ii) Poynting Vector.
iii) Skin Effect.

OR

12 a) State Maxwell's equation in point form for time varying fields.
b) A 150 MHz uniform plane wave in free space is travelling in the $\hat{\mathrm{a}}_{\mathrm{x}}$ direction. The electric field intensity has a maximum amplitude of $200 \hat{\mathrm{a}}_{\mathrm{y}}+400 \hat{\mathrm{a}}_{\mathrm{z}} \mathrm{V} / \mathrm{m}$ at $\mathrm{P}(10,30,-40)$ at time $\mathrm{t}=0$ Find.
i) ω
ii) β
iii) λ
iv) v
v) η
vi) $\overline{\mathrm{E}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$
vii) Use one or more Maxwell's equation to find $\overline{\mathrm{H}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$.

