B.E. (Civil Engineering) Fourth Semester (C.B.S.) Geotechnical Engineering - I

Paper – II

P. Pages : 3

Time : Three Hours

* 0 4 7 2 *

TKN/KS/16/7352

Max. Marks: 80

Notes : 1.	All questions	carry marks	as indicated.
------------	---------------	-------------	---------------

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Question No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Diagrams and chemical equations should be given whenever necessary.
- 11. Illustrate your answers whenever necessary with the help of neat sketches.
- 12. Use of non programmable calculator is permitted.
- **1.** a) Write a brief note on "Soil Formation".
 - b) A relative density test conducted on a sandy soil yielded the following results. Maximum 7 void ratio = 1.20, Minimum void ratio = 0.40, relative density 40%, G = 2.67. Find dry density of the soil in the present state. If 3m thick of this stratum is densified to relative density of 60%. How much it will reduce in thickness? What will be new density in dry & saturated condition.

OR

- 2. a) Derive from the first principles,
W. G. = e. Sr.6
 - b) A clay sample is found to weight 445.54 gms in its natural state. It is then dried in an electric oven at 105°C. The dried weight is found to be 327.56 gm. The specific gravity of the solids is 2.7 & unit weight of the soil mass in its natural state is 1.7 gm/cc. Determine the water content, degree of saturation & the dry unit weight of the mass in its natural state.
- **3.** a) Define Consistency Index & explain it.
 - b) A test for determination for liquid limit was carried out on a soil sample. The following tests of observations were taken. Determine liquid limit & flow index.

No. of Blows (N)	Water content %	
38	47.3	
27	49.6	
20	53	
13	55	

OR

6

6

4.	a)	Write a note on Textural classification of soils.	6
	b)	Determine flow index, liquidity index & consistency index, if L.L. = 67% , P.L. = 33% . natural water content = 43% & given that at water content of 30% , the no. of blows in liquid limit test were 48.	7
5.	a)	What are the factors affecting permeability of soil?	7
	b)	 A falling head permeability test was carried on 15 cm long clay sample. The diameter of sample & stand pipe was 10 cm & 0.75 cm respectively. The level of water in stand pipe dropped from 60 cm to 45 cm in 15 minute. Determine : Permeability in m/day. Time required for level drop to 10 cm. 	7
		OR	
6.	a)	Write a short note on properties of flow net.	6
	b)	What are remedial measures to reduce seepage pressure in hydraulic structure.	4
	c)	Define the terms :	4
		i) Hydraulic Head.	
		ii) Hydraulic Gradient.	
7.	a)	Discuss assumptions and limitations of Boussinesq approach as applied for determination of stresses induced in a soil mass due to surface loading.	6
	b)	A point load of 5 tonnes acts on the surface of ground. Calculate the vertical pressure due to this load at depths of 5.00 & 6.00 m at 3.00 m Horizontally away from the axis of loading in both the cases.	7
		OR	
8.	a)	Explain the terms Isobars, Pressure bulb.	6
	b)	A rectangular area $1.5 \text{ m} \times 3.0 \text{ m}$ carries a uniformly distributed load of $50 \text{ KN} / \text{m}^2$ at the ground surface. Find the vertical pressure at 4.0 m below the centre and corner of the loaded area by equivalent point load method.	7
9.	a)	State the equation for final consolidation settlement & explain the terms in this equation.	6
	b)	In a laboratory consolidation test a 25 mm thick sample takes 60 minutes to reach 50% consolidation. How much time will a 4.5 m thick layer of clay in the field required to attain (i) 50%, (ii) 90% consolidation if it can drain both at top & bottom.	7
		OR	
10.	a)	State the factors affecting compaction.	6

b) Following data is for a standard compaction test on soil using a mould of volume 1000 cm³. **7**

Water content (%)	Wt. of compacted sample (N)
8.5	18.5
12.5	20
13.75	20.5
15.5	20.8
18.2	20.4
20.2	19.8

Determine optimum moisture content and maximum dry density values.

- 11. a) Using a Mohr's diagram derive a relationship between major & minor principal stress in 7 terms of shear parameters.
 - b) If the major & minor principal stresses on a specimen of soil at the instant of failure are 7 500 KN/m² & 150 KN/m² respectively.
 Calculate the values of normal & shear stress on a plane inclined at an angle of 65° with major principal plane.

OR

- 12. a) Explain what is meant by sensitivity of soil. How soil are classified on the basis of 7 sensitivity.
 - b) The stresses on a failure plane in a drained test on a cohesionless soil are as under Normal 7 stress (σ) is 95 KN / m² & shear stress is (τ) 45 KN / m².
 - i) Determine the angle of shearing resistance & angle which the failure plane make with the major principal plane.
 - ii) Find the major & minor principal stress.
