B.E. (Civil Engineering) Third Semester (C.B.S.)
 Mathematics - III

P. Pages : 3

TKN/KS/16/7295
Time : Three Hours

Notes: 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Use of non programmable calculator is permitted.

1. Obtain Fourier Series for
$\mathrm{f}(\mathrm{x})=|\sin \mathrm{x}|,-\pi<\mathrm{x}<\pi$
Hence show that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots . \propto
$$

OR

2. Obtain half range sine series for $f(x)=\pi x-x^{2}$ in the interval $(0, \pi)$.
3. a) Solve : $\left(x^{2}-y x\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$
b) Solve : $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{2} z}{\partial x^{2} \partial y}=2 e^{2 x}+3 x^{2} y$.
c) Solve using the method of separation of variables.
$4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$, given that
$u=3 e^{-y}-e^{-5 y}$, when $x=0$.

OR

4. a) A tightly stretched string with fixed end points $x=0$ and $x=\ell$ is initially in a position given by $\mathrm{y}=\mathrm{y}_{\mathrm{o}} \sin ^{3}\left(\frac{\pi \mathrm{x}}{\ell}\right)$. If it is released from rest from this position. Find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.
b) Solve: $p+3 q=5 z+\tan (y-3 x)$.
c) Solve : $\frac{\partial^{3} z}{\partial x^{3}}-7 \frac{\partial^{3} z}{\partial x \partial y^{2}}+6 \frac{\partial^{3} z}{\partial y^{3}}=\sin (x+2 y)$
5.

Find the extremals of the functional $\int_{1}^{2} \frac{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}{x}$ dx given $y(1)=0, y(2)=1$.
OR
6. Find the plane closed curve of fixed perimeter and maximum area.
7. a) Investigate the linear dependence of the vectors $X_{1}=(3,1,-4), X_{2}=(2,2,-3)$,
$X_{3}=(0,-4,1), X_{4}=(-4,-4,6)$ and if possible find the relation between them.
b) Find eigen values, eigen vectors and modal matrix for $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
c) Verify Cayley Hamilton theorem for matrix $\mathrm{A}=\left[\begin{array}{ccc}2, & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and find A^{-1}.

OR

8. a) Diagonalise the following matrix by orthogonal transformation.

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

b) Use Sylvester theorem to show that

$$
\mathrm{e}^{\mathrm{A}}=\mathrm{e}^{\mathrm{x}}\left[\begin{array}{ll}
\cosh \mathrm{x} & \sinh \mathrm{x} \\
\sinh \mathrm{x} & \cosh \mathrm{x}
\end{array}\right]
$$

where $A=\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]$
c) Solve $\frac{d^{2} y}{d x^{2}}+4 y=0$ given $y=8, \frac{d y}{d x}=0$ when $x=0$
9. a) Using the method of false position, find the root of the equation
$\mathrm{x} \log _{10}^{\mathrm{x}}-1.2=0$; correct upto three places of decimal.
b) Apply Crout's method to solve the equations

$$
\begin{aligned}
& 3 x+2 y+7 z=4 \\
& 2 x+3 y+z=5 \\
& 3 x+4 y+z=7
\end{aligned}
$$

c) Given $\frac{d y}{d x}=x+y, y(0)=1$, find y upto five terms by Picard's method and hence find y when $\mathrm{x}=0.1$ and $\mathrm{x}=0.2$

OR

10. a) Solve by $4^{\text {th }}$ order Runge - Kutta method $\frac{d y}{d x}=x y+y^{2}$ given $y(0)=1, h=0.1$ find $y(0.1)$ and $y(0.2)$.
b) Solve by Gauss Seidal Method.

$$
\begin{aligned}
& x+7 y-3 z=-22 \\
& 5 x-2 y+3 z=18 \\
& 2 x-y+6 z=22
\end{aligned}
$$

c) Find by Newton Raphson method the root of the equation $\mathrm{e}^{\mathrm{x}}-4 \mathrm{x}=0$ near to 2, correct to three decimal places.
11. A firm produces 3 products. These products are processed on 3 different machines. The time required to manufacture 1 unit of each of the 3 products and the daily capacity of the 3 machines are given in the following table.

Machine	Time per Unit			
	Product 1	Product 2	Product 3	Machine capacity
M1	2	3	2	440
M2	4	-	3	470
M3	2	5	-	430

It is required to determine the daily number of units to be manufactured for each product. The profit per unit for product 1, 2 and 3 are Rs. 4, Rs. 3 and Rs. 6 respectively. It is assumed that the amounts produced are consumed in the market. Formulate and solve by Simplex Method.

OR

12. a) A farmer want to make sure that his herd get the minimum daily requirement of three basic nutrient A, B, C. Daily requirement are 15 unit of $A 20$ unit of B and 30 unit of C one gram of product P has 2 unit of $A, 1$ unit of B and 1 unit of C. One gram of product Q has 1 unit of $A, 1$ unit of B and 3 unit of C. The cost of P is Rs. 12/gram and cost at Q is Rs. 18/gram formulate this problem as linear programming problem so that the cost is minimum.
b) Solve the linear programming using graphical method :
