Faculty of Engineering & Technology Fourth Semester B.E. (Electronics Engineering) ET/EC (C.B.S.) Examination ELECTROMAGNETIC FIELD

Time—Three Hours] [Maximum Marks—80 INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Assume suitable data wherever necessary.
- (3) Illustrate your answers wherever necessary with the help of neat sketches.
- 1. (a) Express in cylindrical component:
- 4.6.9 (i) The vector from C(3, 2, -7) to D(-1, -4, 2).
- A unit vector at D directed towards C.
- (iii) A unit vector at D directed towards the origin.
 - (b) State and explain Gauss' Law.

OR

- 2. (a) An infinite uniform line charge $\rho_L = 2nC/m$, lies along x axis in free space, while point charges of 8 nC/m are located at (0, 0, 1) and (0, 0, -1):
 - (i) Find \overline{E} at (2, 3, -4)
 - (ii) To what value should ρ_c be charged to cause \overline{E} to be zero at (0, 0, 3).

www.solveout.in

- Find the numerical value for the divergence of \vec{D} at the point:
 - (i) $P_{\Lambda}(0.3, 0.4, 0.5)$ if: $\vec{D} = 20 xy^2 (z+1) \vec{a}_x + 20 x^2 y (z+1) \vec{a}_y +$ $10 \, x^2 y^2 \, \vec{a} \cdot c / m^2$
 - (ii) $P_B\left(1,\frac{\pi}{2},2\right)$ if:

 $\vec{D} = 4\rho z \sin \phi \vec{a}_{\rho} + 2\rho z \cos \phi \vec{a}_{\phi} + 2\rho^2 \sin \phi \vec{a}_{z}$

- 3. State and explain Biot Savart's Law. (a)
 - Given points A(1, 2, 4), B(-2, -1, 3) and C(3, 1, -2), (b)
 - let differential current element with I = 6 Amp. and 0.038
 - $|d\overline{L}| = 10^{-4}$ m be located at A. The direction of $d\overline{L}$

is from A to B. Find dH at C.

- (a) Let $\overline{H} = -y(x^2 + y^2)\overline{a}_x + x(x^2 + y^2)\overline{a}_y$ in z = 0 plane for plane for $-5 \le x \le 5$ m and
 - $-5 \le y \le 5$ m. Find the total current passing through the z = 0 plane in the $\bar{a}z$ direction inside the rectangle -1 < x < 1 and -2 < y < 2.
 - What is Ampere Circuit Law? Also explain Stoke's **(b)** theorem.
- Obtain Maxwell's equation in point form and in their integral 5. form for time varying fields.

OR

- 6. (a) Assume a homogeneous material of infinite extent with σ = 0, ∈ = 2 × 10⁻¹⁰F/m and μ = 1.25 × 10⁻⁵ H/m. Let E=400cos(10⁹t-kz) ax̄ √m. Use Maxwell's equation to find D, B, H and K.
 - (b) State and prove continuity equation for time varying fields.
- (a) State and prove Poynting Vector.
 (b) The electric field intensity associated with a plane e.m.f. wave travelling in perfect dielectric medium is

e.m.t. wave travelling in perfect dielectric medium is given by: $E_{\chi}(z, t) = 10 \cos (3\pi \times 10^8 t - 2\pi z) \text{ V/m}$

Calculate value of:

- (i) Frequency 1.5×10
- (ii) Wavelength (iii) Velocity of propagation 1991795137. 7
- (iv) Magnetic field intensity \overline{H} if $\mu = \mu$ 6

 OR

 6
- (a) A plane electromagnetic wave is incident obliquely on boundary between perfect dielectrics. Find a relation between reflection and transmission coefficients.
 - (b) A plane wave of 200 MHz, travelling in free space, impinges normally on a large block of material having $E_p = 9$, $M_p = 9$, $\sigma = 0$. Determine η_1 , η_2 , β_1 , β_2 , R and T.
- (a) Define the following characteristics associated with waveguide:
 - (i) Cutoff frequency
 - (ii) Cutoff wavelength
 - (iii) Phase velocity.

6

- (b) Find the wave impedance for the dominant mode in air filled rectangular guide of dimensions 7 cm × 4 cm operating at frequency of 4 GHz.
 (c) Why TEM waves cannot be propagated in rectangular waveguides?
 OR
- (a) Derive the expression for group velocity and phase velocity in rectangular waveguide.
 - (b) A hollow rectangular waveguide has inner dimensions of 7 cms × 4 cms. Find cutoff frequencies in TE₀₁, TE₁₀ and TM₁₁ modes. Why is TE₁₀ mode usually preferred.
- 11. (a) Explain the term 'Retarded Potential'. 4
- (b) Show that the radiation resistance of current element is given by:

$$R_{rad} = 80\pi^2 \left(\frac{dl}{\lambda}\right)^2 \text{ ohms.}$$

OR

- 12. (a) A monopole antenna of height 10 cms operate at a frequency of 300 MHz and is situated above ground. Find its radiation resistance. 3.94% 6
 - (b) Define the following:
 - (i) Radiation Intensity
 - (ii) Directive Gain
 - (iii) Power gain
 - (iv) Front to back ratio.

7