NTK/KW/15-7336

Third Semester B. E. (Computer Engg.) (CBS) Examination
 DIGITAL ELECTRONICS

Time : Three Hours]

[Max. Marks : 80
N. B. : (1) All questions carry marks as indicated.
(2) Answer Six questions.
(3) Assume suitable data wherever necessary.
(4) Illustrate your answers wherever necessary with the help of neat sketches.

1. (a) Show that :-
(i) $\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{B}+\mathrm{B} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{C}=\mathrm{B}+\mathrm{C}$
(ii) $(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{A} \overline{\mathrm{B}})(\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{BC})=\mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C} 4$
(b) Convert the following function to standard SOP form. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AB}+\mathrm{AC}+\mathrm{C}+\mathrm{AD}$ 4
(c) Explain how transistor acts as a switch. 5

OR

2. (a) Perform the following conversions :-
(i) $(275.625)_{10}=(?)_{\mathbf{2}}$
(ii) $(\mathrm{A} 72 \mathrm{E})_{16}=(?)_{\mathbf{8}}$
(iii) $(1100110.1001)_{2}=(?)_{16}$
(iv) (111000) gray $=(?)_{\text {binary }}$
(b) Define :-
(i) Fan-in
(ii) Fan-out
(iii) Propagation delay.
3. (a) Design an Excess -3 to BCD code converter using minimum number of NAND gates only. 7
(b) Design 5:32 decoder by using 3:8 decoder and 2:4 decoder.

OR

4. (a) Design BCD to seven segment display code converter.
(b) Implement the following function using 8:1 MUX $: \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,4,6,7,9,10,11,12,15)$
5. Minimize the following function using k-map and realize using logic gates.
(i) $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(1,4,6,10,20,22,24,26)+$ $\Sigma \mathrm{d}(0,11,16,17) \quad 7$
(ii) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{m}(0,3,4,5,6,7,11,13,14,15) 6$

OR
6. (a) Design NOR gate circuit for the function F where.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\pi \mathrm{M}(1,2,4,9,10,13,17,23,27)$
d ($6,12,15,20,25,30$)
7
(b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{M}(2,3,5,7,9,11,12,13,14,15)$ design using NAND gates.
7. (a) What is race-around condition in JK flip-flop ? Also explain how it is overcome.
(b) Convert the following :-
(i) Jk flip-flop to D flip-flop.
(ii) SR flip-flop to T flip-flop.

OR

8. (a) Explain in brief ROM, PROM, EPROM and E^{2} PROM.
(b) Discuss in brief semiconductor memory organization and its operation.
9. (a) Design a MOD-5 synchronous counter using T flip-flop.
(b) Explain the working of twisted ring counter with suitable example.

OR

10. (a) Write a note on Johnson counter.
(b) What do you understand by parallel and serial shifting in case of shift register ? Explain with proper diagram.
11. (a) Explain full adder circuit using two half adder circuit.
(b) Write short note on ALU.

OR

12. (a) Design astable multivibrator using logic gates. Explain its operations.
(b) Design 4 bit adder using single bit full adders.
