B.E.(Computer Technology) Semester Seventh (C.B.S.) Compilers

P. Pages : 3 Time : Three Hours				KNT/KW/16/7477 Max. Marks : 80	
	Notes	s: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Due credit will be given to neatness and adequate dimensions. Assume suitable data whenever necessary. Illustrate your answers whenever necessary with the help of neat	sketches.	
1.	a)	Explain	phases of Compiler in detail.	10	
	b)	Write a as export	LEX specification for recognizing real constants in floating point nential formal.	format as well 4	
			OR		
2.	a)	What is	Cross Compiler? How boot strapping is needed to developed cross	s compiler. 4	
	b)	What ar	e prerequisite of CFG for TOP-DOWN parser.	4	
	c)	Write re S \rightarrow aA	cursive descent parsing procedures for the grammar d , $A \rightarrow cA/d$	6	
3.	a)	Show th D - L - T -	at the following grammar is LL(1) or not without constructing pa → L : T → L, id id → integer	rsing table. 5	
	b)	Commer i) Eve ii) For iii) Eve iv) Nu	nt on following statements. ery LR(1) grammar is LALR but reverse is not true. errorneous input LR parser detect error earlier than LALR parses ery unambiguous grammar is LR grammar. mber of states of LR parser and LALR parser is same.	8 r.	
			OR		
4.	a)	Show th S - A - B -	at the following grammar is LR(1) but not LALR. → Aa bAc Bc bBa → d → d	9	
	b)	Explain	the data structure for LR parsing table.	4	

KNT/KW/16/7477

5.	a)	What are different types of intermediate code? Show all of them for $c = a + b/-e * d$	
	b)	Give SDTS for 'for' loop explain with suitable example.	7
		OR	
6.		Give SDTS for array reference and show three address code for following statement. A[I, J] = B[I+K, C[K]] + B[I, J]	13
		Where array A and B is of size 20 x 30 C is of size 30 and assume bpw = 4	
7.	a)	Explain in brief loop optimization techniques.	6
	b)	How local common subexpression is identified? If present what is the action taken by code optimization in this regard.	7
		OR	
8.	a)	Find IN and OUT of every block for the following graph.	10

Find IN and OUT of every block for the following graph. 8. a)

b)	What is dominators? How it can be use to detect loop in three address code.	3
a)	a) What are problems in code generation?	
b)	Use simple code generation algorithm to generate code for following three address code. assume two registers are available.	
	$T_1 = a + b$	
	$T_2 = c + d$	
	$T_3 = e - T_2$	

OR

9.

 $T_4 = T_1 - T_3$

10. a) Give the first part of the labelling algorithm. Give number of register required for following DAG.

- b) Construct DAG for the following TAC. $T_1 = a + b$ $T_2 = T_1 + c$ $T_3 = T_1 - T_2$ $T_4 = a + b$ $T_5 = T_4 / T_2$
- **11.** a) Explain phrase level error recovery in LR parsing.
 - b) Give data structure used for symbol table in block structure language.

OR

12.	a)	Explain error recovery in lexical analysis phase.	
	b)	Explain run time storage allocation for procedure call and return statement.	8

7

6

7