B.E. First Semester All Branches (C.B.S.) / B.E. First Semester (Fire Engineering) Engineering Chemistry

P. Pages : 2 Time : Two Hours			NKT/KS/17	/7198
			* 0 2 3 2 * Max. Marks	
	Note	s: 1. 2. 3. 4. 5. 6. 7. 8.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Due credit will be given to neatness and adequate dimensions. Diagrams and chemical equations should be given whenever necessary. Use of non programmable calculator is permitted.	
1.	a)	Mg(HC CaCl ₂ MgSO ₂ NaCl =	r sample contains following imparities in ppm $CO_3)_2 = 36.5$, $CaSO_4 = 54.4$ $= 55.5$, $MgCl_2 = 57$ $A = 90$, $NaHCO_3 = 58.5$ = 25.5 ate the quantities of lime (90% pure) and soda (85% pure) required for softening of	8
	b)		litres of water using NaAlO ₂ as a coagulant @ 16.4ppm. s chlorination? Discuss Break point chlorination and its significance. OR	4
2.	a)	zeolite	ite softener was exhausted by passing 20,000 litres of hard water through it. If the requires 300 litres of 2.5% NaCl solution for regeneration. ate the hardness of water.	3
	b)	Discuss	s the formation and disadvantages of scale in boiler.	4
	c)	Write a process	note on Desalination of sea water using - Electrodialysis and Reverse osmosis S.	5
3.	a)	Explain	n the mechanism of electrochemical corrosion with respect to H ₂ liberation.	3
	b)	How de	esign and material selection helps to control metallic corrosion?	3
	c)	i) Ga	notes on alvanic series. tting corrosion.	4

OR

4.	a)	What is cathodic protection? How it is achieved by impressed current method.	4
----	----	--	---

www.solveout.in

P.T.O

	b)	 Write short note on following. i) Pilling – Bedworth rule. ii) Water line corrosion. iii) Stress corrosion. 	6
5.	a)	How portland cement is manufactured by wet process? Explain with well cabled diagram and various reaction.	6
	b)	What are cement additives? Discuss any two of them.	4
		OR	
6.	a)	Explain the setting and hardening of cement.	4
	b)	Write short note oni) Microscopic constituents of cement.ii) Fly ash as a cementing material.	6
7.	a)	State the basic principles of Green chemistry and explain any two of them.	4
	b)	Discuss the following.i) Carbon credit concept.ii) Power density and Energy density.	4
		OR	

8.	a)	What is super critical fluid? State properties and uses of SCF CO ₂ .	4
	b)	Explain construction and working of $H_2 - O_2$ alkaline fuel cell.	4

remove the waterm

NKT/KS/17/7198 WWW.Solveoutin PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.