B.E.All Branches Semester First (C.B.S.) / B.E. Semester First (Fire Engineering) Engineering Physics Paper - II

P. Pages : 2 Time : Two Hours				★ KNT/KW/16/7197 Max. Marks : 40	
	Note	s: 1. 2. 3. 4. 5. 6. 7.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Assume suitable data whenever necessary. Use of non programmable calculator is permitted. List of Constants Planck's constant $h = 6.63 \times 10^{-34}$ J.S. Velocity of light $c = 3 \times 10^8$ m/s Charge of electron $e = 1.602 \times 10^{-19}$ C Mass of electron $m = 9.11 \times 10^{-31}$ kg Avogadro's No N _A = 6.023 $\times 10^{-23}$ J/K		_
1.	a)	What is Compton effect? Write expressions for the conservation of energy and momentur for Compton scattering.		gy and momentum	3
	b)	•	tensity of modified wavelength (λ ') is higher than that of unmode low atomic no. Scatterer during Compton Scattering?	ified wavelength	3
	c)	the dire	rays of 1 $\stackrel{\circ}{A}$ wavelength are scattered from a carbon block making an angle of direction of incident photon Calculate wavelength of scattered photon and expoil electrons.		4
			OR		
2.	a)	a) What are matter waves? Obtain an expression for de Broglie wavelength associate an electron moving through a region of 'V' volts potential.		associated with	3
	b)	Obtain hypothe	Bohr's Quantization condition of an angular momentum from de- esis.	Broglies	3
	c)	i) Ar	te de Broglie wavelength for a electron having velocity 10 ⁵ m/s and Ball having mass 1 kg and moving with velocity of 10 m/s Interp	ret the results.	4
3.	a)	-	Schrodinger's time independent wave equation, obtain an expressi f electron trapped in an infinite potential well of width 'L'	on for energy	5
	b)	State pl	nysical significance of wave function (ψ).		2
	c)	0	to lowest energy states of an electron trapped in an infinite potent press results in electron-volt.	ial well of width	3

KNT/KW/16/7197

4.	a)	State Heisenberg's uncertainty principle and prove that electron can not be present inside nucleus of an atom.					
	b)	Define phase velocity and group velocity. Also explain the formation of wave packet.					
	c)	Calculate minimum uncertainty in the velocity of an electron confined to a box of 10^{-10} length.					
5.	a)	Define the followings.					
		i) Unit cellii) Miller indices of a plane					
	b)	Obtain the following parameters for BCC & FCC cubic unit cell.					
		i) Atomic radiusii) Packing fraction.					
	c)	Lattice constant for BCC iron at 20° C is 2.80 A°. Density of Iron is 7870 kg/m ³ Determine its atomic mass and radius.	4				
	OR						
6.	a)	State and derive Bragg's law of x-ray diffraction.	4				
	b)	Draw crystal planes in a cubic crystal for given miller Indices: i) (221) ii) (001) iii) (320)	3				
	c)	Find the spacing of (212) and (030) planes in a FCC crystal having lattice constant of 5 \mathring{A} and also find radius.	3				
7.	a)	Explain the formation of hall voltage in an extrinsic semiconductor and obtain the expression of Hall coefficient.	4				
	b)	How, depletion region is formed across the Junction of a diode?	3				
	c)	Find barrier potential across a silicon PN junction at room temperature, if P-region has 10^{21} acceptor atoms/m ³ and N-region has 10^{22} donor atoms/m ³ (Given that $n_i = 1.5 \times 10^{16}$ carriers/m ³)	3				
	OR						
8.	a)	Why Base region is narrow and lightly doped in transistor? Explain.	3				
	b)) Draw energy band diagrams for					
		i) PN Junction in Reverse Biasii) PNP Transistor biased in CB mode.					

c) Find d. c. current gain for a pnp transistor in common emitter mode if collector current is $3 \text{ and base current is } 20 \,\mu\text{ A.}$
