$\begin{array}{c} \text{B.E. Sixth Semester (Aeronautical Engineering) (C.B.S.)} \\ \textbf{Aircraft Design Paper} - V \end{array}$

P. Pages: 2 Fime: Three Ho	ours	* 0 1 1 1	Max. Ma	
Notes: 1	Notes: 1. All questions carry marks as indicated. 2. Solve Question 1 OR Questions No. 2. 3. Solve Question 3 OR Questions No. 4. 4. Solve Question 5 OR Questions No. 6. 5. Solve Question 7 OR Questions No. 8. 6. Solve Question 9 OR Questions No. 10. 7. Solve Question 11 OR Questions No. 12. 8. Due credit will be given to neatness and adequate dimensions. 9. Assume suitable data whenever necessary.			
1		whenever ne	ould be given whenever necessary. cessary with the help of neat sketches. is permitted.	
L. Exp	ain design cycle in detail.			13
		o	R	
2. Give a) c)	· •		Speed rang Wing Configuration	13
Defi a) b)	ne following terms. Interactive design Maintainability	b) d)	Operational Cost Manufacturability	13
		o	R	
4. Desi	gn following airfoils.			13
NAC	CA 23021, NACA 0012, NA	ACA 63-015		
	at choice are available for the erentiate each term of their		power plant location on aircrafts? merits.	14
		o	R	
	der to calculate initial estin	to calculate initial estimates of an airplane thrust-to-weight ratio, the following given.		
Win Win	l Take- off weight Wo = 35 g Ref. Area S = 75 m ² g loading (w/s) = 472 kg/m se speed (v) = 210 m/s	_		

		to 2% of Wo burnt during climb, and rate of Climb, $(R/C) = 2$ m/s. Determine the following.			
		a) Drag Profile.			
		b) Cruise lift Co-efficient.			
		c) Drag generated.			
		d) Flight path angle.			
		e) Thrust/weight required.			
		Assume Oswald's wing efficiency factor $e = 0.89$.			
7.		What are the important factors taken into Consideration for wing design? Explain in brief.	14		
		OR			
8.	a)	What are the different types of load acting on wing? Explain.	7		
	b)	What are the types of wing based on its shape? State their advantages and disadvantages.	7		
9.		What are the different types of tail plane configurations used in aircraft? Explain with neat sketches.			
		OR			
10.	a)	What is the procedure for determination of tail surface area? Explain.	7		
	b)	Draw neat sketch of fuselage. Explain function of its various structural members.	6		
11.	a)	Explain various parts of landing gear with neat sketch.	6		
	b)	What are the design consideration for landing gear.	7		
		OR			
12.	a)	Explain shock observer types with figure.	7		
	b)	Give a short note on landing gear ladder.	6		

Assume a cuing aspect ratio, AR=9.0, Profile-drag Co-efficient $C_{D,o} = 0.024$, Fuel equal
