B.E. (Aeronautical Engineering) Semester Seventh (C.B.S.) Control Engineering

P. Pages : 3 Time : Three Hours			s $KNT/KW/16/75$ Max. Marks :	
	Note	s: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Due credit will be given to neatness and adequate dimensions. Assume suitable data whenever necessary. Diagrams and chemical equations should be given whenever neces Illustrate your answers whenever necessary with the help of neat Use of non programmable calculator is permitted.	-
1.	a)		n loop T. F. of a unity feedback system is given by $G(s) = \frac{40}{s(0.2s)}$ ne the error series for i/p r(t)=3+4t.	${(+1)}$. 6
	b)	$\frac{d^2y}{dt^2} + 4$	tem equation is $\frac{dy}{dt} + 8y = 8x$ the domain specification for unit step i/p.	7
			OR	
2.	a)	c(t)=1+ when su i) Ob	ement conducted on servo mechanism show the system response to $-0.2 e^{-60t} - 1.2 e^{-10t}$ bjected to unit step i/p. tain the expression for closed loop T.F. termine undamped natural frequency & damping ratio of the system	
	b)	Derive a system.	an expression for rise time for second order underdamped unity	feedback control 6
3.	a)	Define s	stability & its types. Also explain Hurwitz criterion & its limitation	7
	b)	Explain	the following term.	6
		i) Ab	solute stability.	
		ii) Co	nditional Stability.	

iii) Relative stability.

OR

KNT/KW/16/7526

P.T.O

4.

Draw the root locus for the system

$$\mathbf{G}(\mathbf{s}) \cdot \mathbf{H}(\mathbf{s}) = \frac{\mathbf{K}}{\mathbf{s}(\mathbf{s}+3)(\mathbf{s}+6)}.$$

Obtain the value of 'K' when $\xi = 0.6$ from root locus. Determine the value of 'K' for marginal stability & critical damping.

5.

Given G(s) =
$$\frac{170\left(\frac{s}{10}+1\right)}{s\left(1+\frac{s}{1.75}\right)\left(1+\frac{s}{60}\right)}$$
.

Draw the open loop Bode diagram. Determine the gain crossover frequency, gain margin, phase margin, Determine the stability of closed loop system.

OR

- 6. a) For a second order system with unity feedback $G(s) = \frac{200}{s(s+8)}$. Find the frequency domain specification. 7
 - b) What are the methods of frequency response analysis ? & Explain in short "Need of domain 7 analysis".
- 7. a) State the Nyquist stability criterion in its most general form.
 - b) Sketch the polar plot of

$$G(s) = \frac{w_n^2}{s^2 + 2\xi w_n s + w_n^2}$$

What will be the effect of $\,\xi\,.$

OR

8.	a)	$GH(s) = \frac{1}{s(s+1)}$ Decide the stability using Nyquist path.			
	b)	Explain the P.I. controllers (P.I.)	4		
9.	a)	Write the procedure for the design of phase lag compensator.			
	b)	What is the phase lead-Lag compensator ? Derive the expression for the T.F. of phase lead compensator.	7		
OR					
10.	a)	Briefly describe the compensation & need for the same.	6		

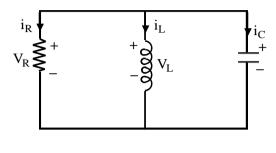
b) Derive the T.F. of passive RC lag network.

KNT/KW/16/7526

13

14

6


7

7

11. a) Determine the system T.F. using the following state equation.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

b) Obtain the state equation for the zero i/p n/w shown in fig. below.

OR

- 12. a) Obtain the phase variable state model for a system described by the differential equation. 7 $\frac{d^3 y(t)}{dt^3} + 5 \frac{d^2 y(t)}{dt^2} + \frac{dy(t)}{dt} + 2y(t) = u(t).$
 - b) Obtain the T.F. of a system from its model.

7

7

7

www.solveout.in

.....out.in