B.E. (Aeronautical Engineering) Semester Third (C.B.S.) Aero - Thermodynamics Paper - II

P. Pages : 4 Time : Three Hours				KNT/KW/16/7259 Max. Marks : 80	
	Note	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Due credit will be given to neatness and adequate dimensions. Assume suitable data whenever necessary. Diagrams and chemical equations should be given whenever n Illustrate your answers whenever necessary with the help of ne Use of non programmable calculator is permitted. Use of steam tables and Mollier chart is permitted.		
1.	a)	properties i) $\int pd$ ii) $\int vd$	V	ng can be used as	6
	b)	Explain t	hermodynamic equilibrium of a system.		3
	c)	 0.05 m³. a) At c b) Acc c) Acc 	fluid at 10 bar is contained in a cylinder behind a piston, the i Calculate work done by the fluid when it expands reversibly. onstant pressure to final volume of 0.2 m^3 . ording to linear law to final volume of 0.2 m^3 and a final press ording to law PV = constant to final volume of 0.1 m^3 . Sketch rams.	ure of 2 bar.	5
			OR		
2.	a)		he difference between a closed system, an open system and an by giving example.	Isolated system?	5
	b)	What are	exact and inexact differential? Show that heat transfer is an in	exact differential.	4
	c)	relationsh	a piston-cylinder assembly undergoes an expansion process fo nip between pressure volume is given by $PV^n = constant$. The i the initial volume is 0.1 m ³ and Final volume is 0.2 m ³ . Deter	nitial pressure is	5

www.solveout.in

the process in kJ if

- a) n = 1.5
- b) n = 1.0 and
- c) n = 0.

KNT/KW/16/7259

P.T.O

- 3. a) State the first. Law of Thermodynamics and prove that for a non-flow process, it leads to the energy equation $Q = \Delta u + W$.
 - b) Define internal energy & prove that it is a property of system.
 - c) When a system is taken from state 'a' to 'b', in fig. 3.1 along path 'acb', 84 kJ of heat flow into the system, and the system does 32 kJ of work.

3

4

6

- a) How much will the heat that flows into the system along path 'adb' be, if the work done is 10.5 kJ?
- b) When system is returned from 'b' to 'a' along the curved path, the work done on the system is 21kJ. Does the system absorb <u>or</u> liberate heat, and how much of the heat is absorbed or liberated?
- c) If $U_a = 0 \& U_d = 42 \text{ kJ}$, find the heat absorbed in the processes 'ad' and 'db'.

OR

4.	a)	Using steady flow energy equation, show that enthalpy of fluid before throttling is equal to enthalpy after throttling.		
	b)	 Air flows steadily at the rate of 0.5 kg/s through an air compressor, entering at 7 m/s velocity, 100 kPa pressure, and 0.95 m³/kg volume, and leaving at 5 m/s, 700 kPa and 0.19 m³/kg. The internal energy of leaving are is 90 kJ/kg greater than that of air entering. Cooling water in the compressor jackets absorbs heat from air at the rate of 58 kW. a) Compute the rate of shaft work input to the air in kW. b) Find the ratio of inlet pipe diameter to outlet pipe diameter. 	8	
5.	a)	State the limitation of First law of Thermodynamics.	2	
	b)	Give the following statement of 2 nd Law.	4	
		i) Kelvin – Planck statement.		
		ii) Clausius statement.		

- c) A heat pump working on the Carnot cycle takes in heat from reservoir at 5°C and delivers 7 heat to reservoir at 60°C. The Heat pump is driven by a reversible Heat engine which takes in heat from a reservoir at 840° C & rejects heat to the reservoir at 60°C. The reversible heat engine also drives a machine that absorbs 30 kw. If the heat pump extracts 17 kJ/S from the 5°C reservoir, determine.
 - a) The rate of heat supply from 840°C source.
 - b) The rate of heat rejection to the 60°C Sink.

OR

www.solveout.in

KNT/KW/16/7259

- **6.** a) Prove that entropy is the property of a system.
 - b) Explain the concept of Available and unavailable energy. When does the system becomes 3 dead?
 - c) A reversible engine, shown in fig. 6.1 during a cycle of operation draws 5 MJ from 400K
 6 reservoir & does 840 kJ of work. Find the amount and direction of heat interaction with other reservoir.

- 7. a) Draw phase equilibrium diagram for pure substance on P-V, T-S and h-s plot with relevant content property Lines.
 - b) A vessel of volume 0.04m³ contains a mixture of saturated water and saturated steam at a temperature of 250°C. The mass of the liquid present is 9 kg. Find.
 - i) The pressure
 - ii) The mass
 - iii) The specific volume
 - iv) The enthalpy
 - v) The entropy
 - vi) The internal energy

OR

8.	a)	Draw neat sketch of throttling colorimeter and explain how dryness fraction of steam is determined? Clearly explain its limitation.	
	b)	 Steam initially at 0.3 MPa, 250°C is cooled at constant volume. a) At what temperature will the steam become saturated Vapour? b) What is the quality at 80°C? c) What is the heat transfer per Kg of steam in cooling from 250°C to 80°C? 	7
9.	a)	Derive an expression for an air standard efficiency of an Otto cycle.	6
	b)	In an air standard Diesel cycle, the compression ratio is 16, & at the beginning isentropic compression, the temperature is 15°C & the pressure 0.1 MPa. Heat is added untill the temperature at the end of constant pressure process is 1480°C. Calculate.	

- i) The cut-off ratio.
- ii) The heat supplied per Kg of air.
- iii) The cycle efficiency.
- iv) The m.e.p.

OR

KNT/KW/16/7259

www.solveout.in

4

6

10. a) State and explain the methods of increasing the thermal efficiency of Rankine cycle.

b) Show that pressure ratio of Brayton cycle for maximum work is given by

$$r_{p} = \left(\frac{T_{3}}{T_{1}}\right)^{\left[\frac{r}{2(r-1)}\right]} \text{ where specific heat ratio. - } \left(r = \frac{C_{p}}{C_{v}}\right)$$

T₃ - maximum temperature of cycle.

 T_1 - minimum temperature of cycle.

c) The mean effective pressure of a Diesel cycle is 7.5 bar & compression ratio is 12.5. Find 4 the parentage cut-off of the cycle if its initial pressure is 1 bar.

5

5

6

- a) State the application of the following devices and obtained the expression for work done.6i) Turbine
 - ii) Compressor
 - b) In a gas turbine unit, the gases flow through the turbine is 15 kg/s & the power developed by the turbine is 12000 kW. The enthalpies of gases at the inlet and outlet are 1260 kJ/Kg & 400 kJ/kg respectively, & the velocity of gas at inlet & outlet are 50 m/s & 110 m/s respectively. Determine.
 - i) The rate at which heat is rejected to turbine &.
 - ii) The area of inlet pipe given that the specific volume of the gases at inlet is 0.45 m^3/kg .

OR

- **12.** a) Explain clearly the difference between a non-flow process and a steady flow process.
 - b) An air turbine froms part of an aircraft refrigerating plant. Air at a pressure of 295 kPa and 7 a temperature of 58°C flow steadily into the turbine with a velocity of 45 m/s. The air leaves the turbine at a pressure of 115 kPa, a temperature of 2°C, & a velocity of 150 m/s. The shaft work delivered by turbine is 54 kJ/kg of air. Neglecting changes in elevation, determine the magnitude & sign of heat transfer per unit mass of air flowing. For air $C_p = 1.005 \text{ kJ} / \text{kg k}$ and Enthalpy $h = C_p T$.

www.solveout.in

KNT/KW/16/7259