B.E. Third Semester (Computer Engineering / Information Technology) (C.B.S.)
 Applied Mathematics - III

P. Pages : 4

NKT/KS/17/7242/7247
Time : Three Hours

Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Use of non programmable calculator is permitted.

1. a)

If $L[f(t)]=\bar{f}(s)$ then $L\left[\int_{0}^{t} f(u) d u\right]=\frac{\bar{f}(s)}{s}$ Hence find $L\left[\int_{0}^{t} \sin u \cdot d u\right]$.
b) Find $L^{-1}\left[\log \left(1+\frac{1}{S^{2}}\right)\right]$, and hence show that $L^{-1}\left[\frac{1}{S} \log \left(1+\frac{1}{S^{2}}\right)\right]=\int_{0}^{t} \frac{2}{x}(1-\cos x) d x$

OR

2. a) Find Laplace Transform of periodic function with period ' 2 a' shown in following fig.

b) Solve $\frac{d^{2} y}{d t^{2}}+y=1$, given $y(0)=1$ y $\left(\frac{\pi}{2}\right)=0$ by using Laplace Transform.
3. a) Find the Fourier transform of

$$
\mathrm{f}(\mathrm{x})= \begin{cases}1, & |\mathrm{x}|<1 \\ 0, & |\mathrm{x}|>1\end{cases}
$$

Hence find $\int_{0}^{\infty} \frac{\sin x}{x} d x$.

OR

4. a) Express $f(x)=\left\{\begin{array}{cc}1, & 0 \leq x \leq \pi \\ 0, & x>\pi\end{array}\right.$
as a Fourier sine integral and hence evaluate $\int_{0}^{\infty} \frac{1-\cos \pi \lambda}{\lambda} \sin \mathrm{x} \lambda \mathrm{d} \lambda$
5. a) Find $Z\left[\mathrm{na}^{\mathrm{n}}\right\rfloor$ and hence find $\mathrm{Z}\left\lfloor\mathrm{n}^{2} \mathrm{a}^{\mathrm{n}}\right\rfloor$.
b)

If $Z[f(n)]=\bar{f}(z)$, then show that $Z\left[\frac{f(n)}{n+p}\right]=Z^{p} \int_{Z}^{\infty} \frac{\bar{f}(Z)}{Z^{p+1}} d Z$
Hence find $Z\left[\frac{1}{n+1}\right]$.

OR

6. a) Use convolution theorem and find $Z^{-1}\left[\frac{\mathrm{Z}^{2}}{(\mathrm{Z}-1)(\mathrm{Z}-3)}\right]$.
b) Solve $y_{n+2}+3 y_{n+1}+2 y_{n}=\mu_{n}$
subject to $\mathrm{y}_{0}=1, \mathrm{y}_{\mathrm{n}}=0, \mathrm{n}<0$
where $\mu_{\mathrm{n}}=\left\{\begin{array}{cc}0, & \mathrm{n}<0 \\ 1 & \mathrm{n} \geq 0\end{array}\right.$ by Z-transform method.
7. a) Investigate the linear dependence or independence of vectors.
$\mathrm{X}_{1}=(1,2,4), \mathrm{X}_{2}=(2,-1,3), \mathrm{X}_{3}=(0,1,2) \mathrm{X}_{4}=(-3,7,2)$
b) Find the modal matrix B corresponding to matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$ and verify $B^{-1} A B$ is a diagonal form.
c) Find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$ where

$$
\mathrm{A}=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]
$$

by Caylay Hamilton's theorem.

OR

8. a) Using Sylvester's theorem, verify $\log _{e} e^{A}=A$
where $A=\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]$
b) Reduce the quadratic form $3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z$ to the canonical form by orthogonal transformation.
c) Solve the differential equation
$\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+5 \frac{\mathrm{dx}}{\mathrm{dt}}+6 \mathrm{x}=0, \mathrm{x}(0)=2$

$$
x^{\prime}(0)=0
$$

by matrix method.
9. a) The content of urn I, II, III are as follows : 2 white, 2 black, 3 red, 2 white, 1 black, 1 red and 4 white, 5 black, 3 red balls respectively. One urn is chosen at random and two balls drawn, they happen tobe white and red. What is the probability that they come from urn I?
b) A random variable X has the density function
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\mathrm{cx}^{2}, & 1 \leq \mathrm{x} \leq 2 \\ \mathrm{cx}, & 2<\mathrm{x}<3 \\ 0, & \text { otherwise }\end{array}\right.$
Find (i) constant C (ii) $\mathrm{P}(\mathrm{X}>2)$ (iii) $\mathrm{P}\left(\frac{1}{2}<\mathrm{x}<\frac{3}{2}\right)$.

OR

10. a) The joint probability function of X and Y is given by
$f(x, y)= \begin{cases}c(2 x+y), & x=0,1,2 \\ 0, & y=0,1,2,3 \\ \text { Otherwise }\end{cases}$
Find (i) constant C (ii) $\mathrm{P}(\mathrm{x} \geq 1, \mathrm{y} \leq 2)$ (iii) The marginal probability function of X and Y .
b) Find the conditional density function of (i) X given Y (ii) Y given X for the distribution function.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{3\left(x^{2}+y^{2}\right)}{2}, & 0 \leq x \leq 1 \\
0 & 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

11. a) A random variable X is expected value of $E\left[(X-1)^{2}\right]=10$ and $E\left[(X-2)^{2}\right]=6$ find (i) $E(X)$ (ii) $\operatorname{Var}(X)$ (iii) σ_{x} S.D. of x.
b) Find moment generating function of the random variable.
$X= \begin{cases}1 / 2 & \text { Pr obability } \frac{1}{2} \\ -1 / 2 & , \text { Pr obability } \frac{1}{2}\end{cases}$

OR

12. a) Let X and Y be joint density function
$f(x, y)=\left\{\begin{array}{cl}x+y, & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{array}\right.$
find (i) $E(x+y)$
(ii) The conditional expectation of X given Y and Y given X .
(iii) Conditional Variance of Y given $\mathrm{X}=0.5$
b) Suppose that the customers are arriving at a ticket counter according to a Poisson process with a mean rate of 2 per minutes. Then in an arrival of 5 minutes, find the probability that the number of customers arriving is (i) Exactly 5 (ii) Less than 4 (iii) greater than 3.
