B.E. Sixth Semester (Information Technology) (C.B.S.)

Operating Systems

P. Pages: 3 NKT/KS/17/7412 Time: Three Hours Max. Marks: 80 Notes: 1. All questions carry marks as indicated. 2. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. 3. 4. Solve Question 5 OR Questions No. 6. 5. Solve Ouestion 7 OR Ouestions No. 8. Solve Question 9 OR Questions No. 10. 6. Solve Question 11 OR Questions No. 12. 7. Assume suitable data whenever necessary. 8. 9. Illustrate your answers whenever necessary with the help of neat sketches. What is operating system? Explain distributed and time sharing operating system. b) Write a short note on spooling. c) What is user and system view of OS. OR Differentiate between multiprogramming and multiprocessing. 2. 6 a) Explain with neat diagram, the concept of system calls. List pointwise functions of various b) system calls used. 3. List and explain the advantages and disadvantages of each of the following file access a) i) Sequential Access Method. Indexed Access Method. ii) Random Access Method. iii) Explain various operations associated with files. 6 b) OR Describe various scheme that are used for implementing logical structuring of directories. 4. 5 a) Suppose the head of moving disk with 200 cylinders and is currently at track 60. If the b) 9 queue of a request is kept in order as 65, 170, 35, 120, 10, 140. What are the total head movements to satisfy the request for the scheme? i) **SSTF** C-SCAN iii) **FCFS** iv) **SCAN** LOOK Draw state transition diagram of a process. What do you mean by a process control block? 8 5. a) Explain it with neat diagram.

NKT/KS/17/7412

	07	/			10				
b)		ferent types of sch	nedulers present	in the system? Bring out the	relevance 5				
IJ	of each of them.				(())				
			OR	10	0				
			021	a (E)					
a)	Define thread. E	xplain various mu	lltithreading mo	dels.	5				
b)	Consider the following	lowing set of proc	esses	(0)	8				
0)	Consider the for	lowing set of proc			0				
	Process	CPU Burst Time	Arrival Time	Priority					
	P ₁	3 ms	0	3					
	P ₂	5 ms	1	1					
	P_3	2 ms	2	2					
	P_4	5 ms	3	5					
	P ₅	5 ms	4	4	202				
ソ	Calculate the average waiting time and Turn around time for each.								
	i) FCFSiii) Priority		ii) SJI iv) RR	c (time slice = 2)	2)				
	iii) Thomay		IV) KI	(time since – 2)					
a)	Describe the foll	lowing -		(C)	9				
	i) Swapping								
		d external fragmer	ntation.						
	iii) Paging.	E 6	5						
b)	What is page fau	ılt ? Explain diffe	rent steps to han	dle page fault.	5				
		(())~	0.70						
	2(0)		OR						
a)	With neat diagra	m explain the con	ncept of demand	paging.	4				
b)	Explain optimal	page replacement	algorithm with	an example.	\\\\ 5				
				(0)	ze = 3. 5				
c)	Consider following page reference string 4 3 2 1 4 3 5 4 3 1 5. Assume frame size = 3. How many page fault would occur for								
	(i) FIFO page replacement (ii) Optimal page replacement.								
	() - 1 - 8	r () - r							
a)			Explain the thre	e condition that a solution to t	the critical 7				
	section problem	must satisfy.	(U/2)						
b)	Explain semapho	ores and its limita	tions		6				
0)	Zipiam semapi		cions.		· ·				
	O_{I}	2)(0)	OR						
	Explain Dining -	- Philosopher prob	olem and Reader	- Writers problem with soluti	on. 13				
a)	What is an Acce	ss Matrix 9 Decor	ihe various meth	nods to implement an Access	matrix. 7				
u)	THAT IS All ACCC	bb Maula : Desci	ioc various incli	ious to implement an Access	mann.				

OR

6.

7.

9.

10.

11.

Explain the various methods to detect a deadlock and recover it.

Process	Allocation			Max			Available		
	A	В	С	A	В	С	A	В	С
P ₀	0	1	0	7	5	3	3	3	2
P ₁	2	0	0	3	2	2			
P ₂	3	0	2	9	0	2			
P ₃	2	1	1/12	2	2	2			
P ₄	0	0	2	4	3	3			

- i) Find out if system state is safe. If safe find safe sequence.
- ii) If P₁ makes a request P₁ (1, 0, 2) is resulting state safe?
- iii) If P₄ makes a request P₄ (3, 3, 0) can it be granted? Solve.
- b) What are the various condition for deadlock prevention?

