B.E. Fourth Semester (Information Technology) (C.B.S.)

Theory of Computation

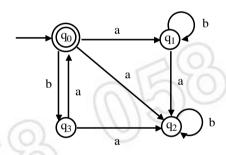
P. Pages: 3

Time: Three Hours

NKT/KS/17/7300

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.


- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Illustrate your answers whenever necessary with the help of neat sketches.

1. a) Design DFA to check whether the given binary number is divisible by 5.

6

b) Convert the following NFA into equivalent DFA.

7

OR

2. a) Design a mealy machine to count no. of occurrence of "ab" and convert the resultant machine into Moore M/c

b) Define the following with suitable example.

5

i) Language.

ii) String.

iii) NULL String.

iv) Prefix.

v) Suffix.

3. a) Construct a optimized DRA corresponding to the regular expression given below

7

$$\underline{(a+b)^*aa(a+b)^*} +$$

$$(a+b)^*bb(a+b)^*$$

b) Obtain the regular expression from following grammar.

3

$$S \rightarrow 1A \mid 0C \mid 0$$

$$A \rightarrow 1B$$

$$B \rightarrow 1B \mid 1D$$

$$C \rightarrow 0$$

$$D \rightarrow 0D \mid 01$$

Answer following. Unrestricted grammar is also a context free grammar. True False Which of the following is types 0 but not type 1 & why? ii) $S \rightarrow aaB|ab|a$ $S \rightarrow E$ ii) iii) abSa →abA $aS \rightarrow abaS$ iv) OR State the pumping Lemma for regular languages. Consider the language L given below a) and prove using pumping Lemma; L is not a regular language. $L = \{ a^n \ b^{n+1} | n > 0 \}.$ Write the steps used to convert the Right linear grammar into Left linear grammar. b) Convert the following right linear grammar to left linear grammar:- $S \rightarrow aaA/bc$ $A \rightarrow bbB/b$. $B \rightarrow cA/c$ Design a PDA to accept all string over $L = (a^n b^m c^{|m-n|} | m, n > 1)$ with all possible 7 a) condition. b) Write the closure properties of context free languages. If L₁ and L₂ are context – free 6 languages. OR Convert the following in CNF: $S \rightarrow AB a \mid b$ $A \rightarrow bb A \mid B$ $B \rightarrow a A a$ b) Construct PDA from the given grammar. $E \rightarrow$ +EE | *EE | \$TF $T \rightarrow$ +T|+ $F \rightarrow$ *F|+Construct a Turing machine accepting the language $L = \{a^n \ b^{2n} \ c^n \mid n \ge 1\}$ a) Explain the concept of linear Bounded Auto mata. b)

- **8.** a) Explain the types of Turing machine.
 - b) Design a Turing machine That performs Two's Complement of the binary number.

4.

5.

6.

7.

		OL O	
9.	a)	Explain the concept of Church's hypothesis.	6
V)	b)	Explain the properties of Recursively Enumerable language.	7
		OR	
10.	a)	Define Ackerman's function & compute. A(1,1), A(2,1) and A (2,2)	6
	b)	Explain the following terms.1) Halting problem.2) Post Correspondence problem.	4
11.	a)	 Explain the following terms. 1) μ-recursive function. 2) Primitive recursive function. 	4
)((b)	Write short notes on: i) Bounded minimalization. ii) Un Bounded minimalization.	5
12.	a)	Consider the function. equals $(x, y) = 1$ if $x = y$ $= 0$ if $x \neq y$ Show that this function is primitive recursive.	6
	b)	What do you mean by primitive recursive function over n and over a, b?	7

