Notes : 1. All questions carry marks as indicated.
2. Solve Question 1 OR Questions No. 2.
3. Solve Question 3 OR Questions No. 4.
4. Solve Question 5 OR Questions No. 6.
5. Solve Question 7 OR Questions No. 8.
6. Solve Question 9 OR Questions No. 10.
7. Solve Question 11 OR Questions No. 12.
8. Assume suitable data whenever necessary.
9. Use of non programmable calculator is permitted.

1. a) Prove that $\int_{0}^{1} \mathrm{x}^{\mathrm{n}-1}\left(\log \frac{1}{\mathrm{x}}\right)^{\mathrm{m}-1} \mathrm{dx}=\frac{\sqrt{m}}{\mathrm{n}^{\mathrm{m}}}$
b) Evaluate $\int_{0}^{1} \frac{x^{\alpha}-1}{\log \mathrm{x}} \mathrm{dx}, \alpha \geq 0$ by differentiating under integral sign.

OR

2. a)

Evaluate $\int_{0}^{1} x^{4}(1-\sqrt{x})^{5} d x$
b) Find Root Mean square value of $\log _{\mathrm{e}}{ }^{\mathrm{x}}$ over the range $\mathrm{x}=1$ to $\mathrm{x}=\mathrm{e}$.
3. a) Trace the curve $y^{2}(2 a-x)=x^{3}$.
b) Find the area enclosed by two parabolas $y^{2}=4 x$ and $y^{2}=-4(x-2)$.

OR

4. a) Trace the curve $r=a(1+\cos \theta)$ and find the perimeter of the curve.
b) Find the volume of the solid obtained by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about x axis.
5. a) Evaluate $\iint_{R} y d x d y$ where R is the region bounded by parabolas $y^{2}=4 x$ and $x^{2}=4 y$.
b) Evaluate by changing order of integration.
$\int_{0}^{4} \int_{y}^{4} \frac{x}{x^{2}+y^{2}} d y d x$
c) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$ by changing into polar coordinates.

OR

6. a)

Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$
b) Evaluate $\iint \mathrm{r}^{3} \mathrm{drd} \theta$ over the area bounded by circles $\mathrm{r}=2 \cos \theta$ and $\mathrm{r}=4 \cos \theta$.
c) Find the area lying between the parabola $y=4 x-x^{2}$ and the line $y=x$.
7. a) Prove that
i) $[\bar{b}-\bar{c} \bar{c}-\bar{a} \bar{a}-\bar{b}]=0$
ii) $(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot\{(\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \times(\overline{\mathrm{a}} \times \overline{\mathrm{b}})\}=\{(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \mathrm{c}\}^{2}$
b) A particle moves along a curve $x=t^{3}+1, y=t^{2}, z=2 t+5$, where t is the time. Find the component of its velocity and acceleration at $\mathrm{t}=1$ in the direction $\mathrm{i}+\mathrm{j}+3 \mathrm{k}$.
c) Find the angle between the tangents to the curve $\overline{\mathrm{r}}=\mathrm{t}^{2} \mathrm{i}-2 \mathrm{t}+\mathrm{t}^{3} \mathrm{k}$ at the points $\mathrm{t}=1$ and $\mathrm{t}=2$.
8. a) Find the directional derivative of $\phi=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of line PQ where Q is the point $(5,0,4)$. In what direction will it be maximum.
b) A vector field is given by -
$\bar{A}=\left(x^{2}+x y^{2}\right) i+\left(y^{2}+x^{2} y\right) j$
Show that field is irrotational and find its scalar potential.
c) If $\overline{\mathrm{r}}=x i+y j+z k$ show that
i) $\operatorname{gradr}=\frac{\vec{r}}{\mathrm{r}}$
ii) $\nabla \mathrm{r}^{\mathrm{n}}=\mathrm{nr}^{\mathrm{n}-2} \underset{\mathrm{r}}{\mathrm{r}}$
9. Find the total work done in moving a particle in a field of force given by $\overline{\mathrm{F}}=3 \mathrm{xyi}-5 \mathrm{zj}+10 \mathrm{xk}$ along the curve $\mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=2 \mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$ from $\mathrm{t}=1$ to $\mathrm{t}=2$.
10.

Verify Greens' theorem in the plane for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region defined by $y=\sqrt{x}, y=x^{2}$.
11. a) Fit a curve $y=a+b x^{2}$ for the following data :

x	0	1	2	3
y	2	4	10	15

b) Using Lagrange's interpolation formula, find the value of y when $\mathrm{x}=10$ from the following table.

x	5	6	9	11
y	12	13	14	16

OR

12. a) The two lines of regressions are
$8 x-10 y+66=0: 40 x-18 y=214$
If $\sigma_{x}{ }^{2}=9$ Find :
i) Mean values of x and y
ii) Coefficient of correlation, and
iii) σ_{y}, the standard deviation of y.
b) Solve $u_{n+2}-2 u_{n+1}+u_{n}=n^{2} \cdot 2^{n}$.
