

Calculate electric field intensity at a point A(1, 2, 3) in free space caused by a charge 6 4. a) $Q_1 = 5 \text{ nC}$ at a point (2, 3, 5) and another charge $Q_2 = 4 \text{ nC}$ at R(3, 0, 3) State Coulomb's law. Derive an expression for electric field intensity at a point due to 7 b) infinite line charge. 7 5. a) Given the electric flux density $\overline{D} = 0.3 r^2 \overline{a}_r nc/m^2$ in free space -Find \overline{E} at r = 2, $\theta = 25^{\circ}$, $\phi = 90^{\circ}$ i) ii) Find the total charge within the sphere r = 3Find the total electric flux leaving the sphere r = 4. iii) b) Given $\overline{D} = \frac{5r^2}{4}\overline{a}_r c/m^2$ in spherical co-ordinates. Evaluate both sides of divergence theorem for the volume of the sphere enclosed by r = 4m. OR 7 6. a) Define electric potential show that $\overline{E} = -\nabla V$. 7 b) Given $V = 100 \text{ xy}^2 \text{z} + 50 \text{Z}^2 \text{V}$ in free space. Find \overline{D} and ρ_V at (3, 3, 3) 7. Derive the boundary conditions at the boundary between two perfect dielectrics. a) 7 The region z < 0 contains dielectric for which $\in_{\eta} = 2.5$ and the region z > 0 is 7 b) characterized by $\in_{r_2} = 4$. Let $\overline{E}_1 = -30 \ \overline{a}_x + 50 \ \overline{a}_y + 70 \ \overline{a}_z \ V/m$ and find iii) E_{t1} iv) E₁ ii) \overline{E}_{t_1} v) θ_1 E_{N_1} i) OR Derive the expression for capacitance for a parallel plate capacitor. 8. 7 a) 7 b) Given $V = \frac{50 \sin \theta}{r^2}$ volts in free space. Determine whether or not V satisfies laplace equation. Derive the expression for magnetic field intensity due to an infinite filament carrying 9. 7 a) current I in it. In the region $0 \le \rho \le 0.5$ m in cylindrical co-ordinates, the current density is b) 6 $\overline{J} = 4.5 e^{-2\rho} \overline{a}_z A/m^2$ and $\overline{J} = 0$ elsewhere. Use Ampere's circuital law to find \overline{H} every where. OR

NKT/KS/17/7279

www.solveout.in

Evaluate both sides of Stoke's Theorem for the field $\overline{H} = 6xy \overline{a}_x - 3y^2 \overline{a}_y A/m$ and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Let the positive direction of $d\overline{s}$ be \overline{a}_z .

6

7

6

13

- b) State and explain Amperes circuital law and Biot Savarts law.
- **11.** a) State Maxwell's equation for steady fields in their point form for time varying electric and magnetic fields.
 - b) Given the magnetic flux density B = 6 cos(10⁶t) sin (0.01 x) a_z mT.
 i) Find the magnetic flux passing through the surface z = 0, 0 ≤ x ≤ 20 m, 0 < y < 3 at t = 1 μ sec.
 - ii) Find the value of the closed line integral of \overline{E} around the perimeter of the surface specified above at t = 1 μ sec.

OR

www.solveout.in

12.

10.

a)

- Write short notes on :
- i) Phase constant.
- ii) Attenuation const.
- iii) Depth of penetration

NKT/KS/17/7279

